55
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tooth agenesis and orofacial clefting: genetic brothers in arms?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tooth agenesis and orofacial clefts represent the most common developmental anomalies and their co-occurrence is often reported in patients as well in animal models. The aim of the present systematic review is to thoroughly investigate the current literature (PubMed, EMBASE) to identify the genes and genomic loci contributing to syndromic or non-syndromic co-occurrence of tooth agenesis and orofacial clefts, to gain insight into the molecular mechanisms underlying their dual involvement in the development of teeth and facial primordia. Altogether, 84 articles including phenotype and genotype description provided 9 genomic loci and 26 gene candidates underlying the co-occurrence of the two congenital defects: MSX1, PAX9, IRF6, TP63, KMT2D, KDM6A, SATB2, TBX22, TGFα, TGFβ3, TGFβR1, TGFβR2, FGF8, FGFR1, KISS1R, WNT3, WNT5A, CDH1, CHD7, AXIN2, TWIST1, BCOR, OFD1, PTCH1, PITX2, and PVRL1. The molecular pathways, cellular functions, tissue-specific expression and disease association were investigated using publicly accessible databases (EntrezGene, UniProt, OMIM). The Gene Ontology terms of the biological processes mediated by the candidate genes were used to cluster them using the GOTermMapper (Lewis-Sigler Institute, Princeton University), speculating on six super-clusters: (a) anatomical development, (b) cell division, growth and motility, (c) cell metabolism and catabolism, (d) cell transport, (e) cell structure organization and (f) organ/system-specific processes. This review aims to increase the knowledge on the mechanisms underlying the co-occurrence of tooth agenesis and orofacial clefts, to pave the way for improving targeted (prenatal) molecular diagnosis and finally to reflect on therapeutic or ultimately preventive strategies for these disabling conditions in the future.

          Electronic supplementary material

          The online version of this article (doi:10.1007/s00439-016-1733-z) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references218

          • Record: found
          • Abstract: found
          • Article: not found

          p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development.

          The p63 gene, a homologue of the tumour-suppressor p53, is highly expressed in the basal or progenitor layers of many epithelial tissues. Here we report that mice homozygous for a disrupted p63 gene have major defects in their limb, craniofacial and epithelial development. p63 is expressed in the ectodermal surfaces of the limb buds, branchial arches and epidermal appendages, which are all sites of reciprocal signalling that direct morphogenetic patterning of the underlying mesoderm. The limb truncations are due to a failure to maintain the apical ectodermal ridge, a stratified epithelium, essential for limb development. The embryonic epidermis of p63-/- mice undergoes an unusual process of non-regenerative differentiation, culminating in a striking absence of all squamous epithelia and their derivatives, including mammary, lacrymal and salivary glands. Taken together, our results indicate that p63 is critical for maintaining the progenitor-cell populations that are necessary to sustain epithelial development and morphogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities.

            We describe the cloning of p63, a gene at chromosome 3q27-29 that bears strong homology to the tumor suppressor p53 and to the related gene, p73. p63 was detected in a variety of human and mouse tissues, including proliferating basal cells of epithelial layers in the epidermis, cervix, urothelium, and prostate. Unlike p53, the p63 gene encodes multiple isotypes with remarkably divergent abilities to transactivate p53 reporter genes and induce apoptosis. Importantly, the predominant p63 isotypes in many epithelial tissues lack an acidic N terminus corresponding to the transactivation domain of p53. We demonstrate that these truncated p63 variants can act as dominant-negative agents toward transactivation by p53 and p63, and we suggest the possibility of physiological interactions among members of the p53 family.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              p63 is a p53 homologue required for limb and epidermal morphogenesis.

              The p53 tumour suppressor is a transcription factor that regulates the progression of the cell through its cycle and cell death (apoptosis) in response to environmental stimuli such as DNA damage and hypoxia. Even though p53 modulates these critical cellular processes, mice that lack p53 are developmentally normal, suggesting that p53-related proteins might compensate for the functions of p53 during embryogenesis. Two p53 homologues, p63 and p73, are known and here we describe the function of p63 in vivo. Mice lacking p63 are born alive but have striking developmental defects. Their limbs are absent or truncated, defects that are caused by a failure of the apical ectodermal ridge to differentiate. The skin of p63-deficient mice does not progress past an early developmental stage: it lacks stratification and does not express differentiation markers. Structures dependent upon epidermal-mesenchymal interactions during embryonic development, such as hair follicles, teeth and mammary glands, are absent in p63-deficient mice. Thus, in contrast to p53, p63 is essential for several aspects of ectodermal differentiation during embryogenesis.
                Bookmark

                Author and article information

                Contributors
                0032 (0)16 332459 , Carine.Carels@kuleuven.be
                Journal
                Hum Genet
                Hum. Genet
                Human Genetics
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0340-6717
                1432-1203
                3 October 2016
                3 October 2016
                2016
                : 135
                : 12
                : 1299-1327
                Affiliations
                [1 ]Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, The Netherlands
                [2 ]Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
                [3 ]Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
                [4 ]Department of Orthodontics, Dentofacial Orthopedics and Pedodontics, Center for Dental and Craniofacial Sciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
                [5 ]Department of Biomedical and Specialty Surgical Sciences, Medical Genetic Unit, University of Ferrara, Ferrara, Italy
                [6 ]Department of Oral Health Sciences, Faculty of Medicine, KU Leuven and University Hospitals KU Leuven, Kapucijnenvoer, 7, 3000 Leuven, Belgium
                Author information
                http://orcid.org/0000-0002-8974-9223
                Article
                1733
                10.1007/s00439-016-1733-z
                5065589
                27699475
                c6d345f6-1cd1-4145-9663-f59923f59569
                © The Author(s) 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 29 April 2016
                : 21 September 2016
                Categories
                Review
                Custom metadata
                © Springer-Verlag Berlin Heidelberg 2016

                Genetics
                Genetics

                Comments

                Comment on this article