161
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic Architecture of a Reinforced, Postmating, Reproductive Isolation Barrier between Neurospora Species Indicates Evolution via Natural Selection

      research-article
      * , ,
      PLoS Genetics
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A role for natural selection in reinforcing premating barriers is recognized, but selection for reinforcement of postmating barriers remains controversial. Organisms lacking evolvable premating barriers can theoretically reinforce postmating isolation, but only under restrictive conditions: parental investment in hybrid progeny must inhibit subsequent reproduction, and selected postmating barriers must restore parents' capacity to reproduce successfully. We show that reinforced postmating isolation markedly increases maternal fitness in the fungus Neurospora crassa, and we detect the evolutionary genetic signature of natural selection by quantitative trait locus (QTL) analysis of the reinforced barrier. Hybrid progeny of N. crassa and N. intermedia are highly inviable. Fertilization by local N. intermedia results in early abortion of hybrid fruitbodies, and we show that abortion is adaptive because only aborted maternal colonies remain fully receptive to future reproduction. In the first QTL analysis of postmating reinforcement in microbial eukaryotes, we identify 11 loci for abortive hybrid fruitbody development, including three major QTLs that together explain 30% of trait variance. One of the major QTLs and six QTLs of lesser effect are found on the mating-type determining chromosome of Neurospora. Several reinforcement QTLs are flanked by genetic markers showing either segregation distortion or non-random associations with alleles at other loci in a cross between N. crassa of different clades, suggesting that the loci also are associated with local effects on same-species reproduction. Statistical analysis of the allelic effects distribution for abortive hybrid fruitbody development indicates its evolution occurred under positive selection. Our results strongly support a role for natural selection in the evolution of reinforced postmating isolation in N. crassa.

          Author Summary

          Although Darwin believed that natural selection could not drive intersterility between species, it is now well established that there is a role for natural selection in the evolution of premating discrimination that reinforces barriers to hybridization. However, natural selection for postmating barriers, like hybrid inviability, is still controversial, because it can only occur when overall maternal fitness is increased by the inviability of hybrid offspring. Constraint on adaptive evolution of postmating barriers poses a problem when organisms without premating preferences must adapt to the presence of related species and ensure that reproduction occurs only between members of the same species. We studied the evolutionary genetics of a reinforced, postmating barrier between two species of mold, Neurospora crassa and N. intermedia. Although hybrids have low fitness, Neurospora females do not discriminate against different-species sex partners before mating. Instead, N. crassa has adapted to the presence of the N. intermedia in its range by selectively aborting hybrid fruitbodies. We show that abortion increases maternal fitness because N. crassa can mate again after hybridization only if fruitbodies abort. Abortion is controlled by 11 loci, whose genetic effects are consistent with an adaptive evolution model, confirming that abortion evolved via natural selection against hybridization.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: not found
          • Book: not found

          The Genetical Theory of Natural Selection

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora.

            To critically examine the relationship between species recognized by phylogenetic and reproductive compatibility criteria, we applied phylogenetic species recognition (PSR) to the fungus in which biological species recognition (BSR) has been most comprehensively applied, the well-studied genus Neurospora. Four independent anonymous nuclear loci were characterized and sequenced from 147 individuals that were representative of all described outbreeding species of Neurospora. We developed a consensus-tree approach that identified monophyletic genealogical groups that were concordantly supported by the majority of the loci, or were well supported by at least one locus but not contradicted by any other locus. We recognized a total of eight phylogenetic species, five of which corresponded with the five traditional biological species, and three of which were newly discovered. Not only were phylogenetic criteria superior to traditional reproductive compatibility criteria in revealing the full species diversity of Neurospora, but also significant phylogenetic subdivisions were detected within some species. Despite previous suggestions of hybridization between N. crassa and N. intermedia in nature, and the fact that several putative hybrid individuals were included in this study, no molecular evidence in support of recent interspecific gene flow or the existence of true hybrids was observed. The sequence data from the four loci were combined and used to clarify how the species discovered by PSR were related. Although species-level clades were strongly supported, the phylogenetic relationships among species remained difficult to resolve, perhaps due to conflicting signals resulting from differential lineage sorting.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Regression models and life-tables.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                August 2011
                August 2011
                18 August 2011
                : 7
                : 8
                : e1002204
                Affiliations
                [1]Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
                Washington University School of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: ET DJJ JWT. Performed the experiments: ET DJJ. Analyzed the data: ET. Wrote the paper: ET DJJ JWT.

                Article
                PGENETICS-D-11-00405
                10.1371/journal.pgen.1002204
                3158040
                21876674
                c883fd82-55d7-484a-a5be-38c0d9bb4fd9
                Turner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 18 February 2011
                : 10 June 2011
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Evolutionary Biology
                Evolutionary Processes
                Adaptation
                Hybridization
                Natural Selection
                Speciation
                Microbiology
                Mycology
                Fungi

                Genetics
                Genetics

                Comments

                Comment on this article