Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A high‐calorie diet aggravates LPS‐induced pneumonia by disturbing the gut microbiota and Th17/Treg balance

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis.

          Regulatory T cells (Tregs) that express the transcription factor Foxp3 are critical for regulating intestinal inflammation. Candidate microbe approaches have identified bacterial species and strain-specific molecules that can affect intestinal immune responses, including species that modulate Treg responses. Because neither all humans nor mice harbor the same bacterial strains, we posited that more prevalent factors exist that regulate the number and function of colonic Tregs. We determined that short-chain fatty acids, gut microbiota-derived bacterial fermentation products, regulate the size and function of the colonic Treg pool and protect against colitis in a Ffar2-dependent manner in mice. Our study reveals that a class of abundant microbial metabolites underlies adaptive immune microbiota coadaptation and promotes colonic homeostasis and health.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The gut microbiota--masters of host development and physiology.

            Establishing and maintaining beneficial interactions between the host and its associated microbiota are key requirements for host health. Although the gut microbiota has previously been studied in the context of inflammatory diseases, it has recently become clear that this microbial community has a beneficial role during normal homeostasis, modulating the host's immune system as well as influencing host development and physiology, including organ development and morphogenesis, and host metabolism. The underlying molecular mechanisms of host-microorganism interactions remain largely unknown, but recent studies have begun to identify the key signalling pathways of the cross-species homeostatic regulation between the gut microbiota and its host.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis.

              Metabolites from intestinal microbiota are key determinants of host-microbe mutualism and, consequently, the health or disease of the intestinal tract. However, whether such host-microbe crosstalk influences inflammation in peripheral tissues, such as the lung, is poorly understood. We found that dietary fermentable fiber content changed the composition of the gut and lung microbiota, in particular by altering the ratio of Firmicutes to Bacteroidetes. The gut microbiota metabolized the fiber, consequently increasing the concentration of circulating short-chain fatty acids (SCFAs). Mice fed a high-fiber diet had increased circulating levels of SCFAs and were protected against allergic inflammation in the lung, whereas a low-fiber diet decreased levels of SCFAs and increased allergic airway disease. Treatment of mice with the SCFA propionate led to alterations in bone marrow hematopoiesis that were characterized by enhanced generation of macrophage and dendritic cell (DC) precursors and subsequent seeding of the lungs by DCs with high phagocytic capacity but an impaired ability to promote T helper type 2 (TH2) cell effector function. The effects of propionate on allergic inflammation were dependent on G protein-coupled receptor 41 (GPR41, also called free fatty acid receptor 3 or FFAR3), but not GPR43 (also called free fatty acid receptor 2 or FFAR2). Our results show that dietary fermentable fiber and SCFAs can shape the immunological environment in the lung and influence the severity of allergic inflammation.
                Bookmark

                Author and article information

                Journal
                Journal of Leukocyte Biology
                J Leukocyte Bio
                Wiley
                0741-5400
                1938-3673
                July 2022
                May 31 2022
                July 2022
                : 112
                : 1
                : 127-141
                Affiliations
                [1 ]School of Traditional Chinese Medicine Beijing University of Chinese Medicine No.11, Bei San Huan East Road Beijing China
                Article
                10.1002/JLB.3MA0322-458RR
                35638590
                c952c631-a7e1-4ac8-9de3-65c94148b901
                © 2022

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article