34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In vitro analysis of the interaction between the small RNA SR1 and its primary target ahrC mRNA

      research-article
      1 , 2 , 1 , *
      Nucleic Acids Research
      Oxford University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Small regulatory RNAs (sRNAs) from bacterial chromosomes became the focus of research over the past five years. However, relatively little is known in terms of structural requirements, kinetics of interaction with their targets and degradation in contrast to well-studied plasmid-encoded antisense RNAs. Here, we present a detailed in vitro analysis of SR1, a sRNA of Bacillus subtilis that is involved in regulation of arginine catabolism by basepairing with its target, ahrC mRNA. The secondary structures of SR1 species of different lengths and of the SR1/ ahrC RNA complex were determined and functional segments required for complex formation narrowed down. The initial contact between SR1 and its target was shown to involve the 5′ part of the SR1 terminator stem and a region 100 bp downstream from the ahrC transcriptional start site. Toeprinting studies and secondary structure probing of the ahrC/SR1 complex indicated that SR1 inhibits translation initiation by inducing structural changes downstream from the ahrC RBS. Furthermore, it was demonstrated that Hfq, which binds both SR1 and ahrC RNA was not required to promote ahrC/SR1 complex formation but to enable the translation of ahrC mRNA. The intracellular concentrations of SR1 were calculated under different growth conditions.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli.

          RyhB is a small antisense regulatory RNA that is repressed by the Fur repressor and negatively regulates at least six mRNAs encoding Fe-binding or Fe-storage proteins in Escherichia coli. When Fe is limiting, RyhB levels rise, and target mRNAs are rapidly degraded. RyhB is very stable when measured after treatment of cells with the transcription inhibitor rifampicin, but is unstable when overall mRNA transcription continues. We propose that RyhB turnover is coupled to and dependent on pairing with the target mRNAs. Degradation of both mRNA targets and RyhB is dependent on RNase E and is slowed in degradosome mutants. RyhB requires the RNA chaperone Hfq. In the absence of Hfq, RyhB is unstable, even when general transcription is inhibited; degradation is dependent upon RNase E. Hfq and RNase E bind similar sites on the RNA; pairing may allow loss of Hfq and access by RNase E. Two other Hfq-dependent small RNAs, DsrA and OxyS, are also stable when overall transcription is off, and unstable when it is not, suggesting that they, too, are degraded when their target mRNAs are available for pairing. Thus, this large class of regulatory RNAs share an unexpected intrinsic mechanism for shutting off their action.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator.

            Exposure of E. coli to hydrogen peroxide induces the transcription of a small RNA denoted oxyS. The oxyS RNA is stable, abundant, and does not encode a protein. oxyS activates and represses the expression of numerous genes in E. coli, and eight targets, including genes encoding the transcriptional regulators FhlA and sigma(S), were identified. oxyS expression also leads to a reduction in spontaneous and chemically-induced mutagenesis. Our results suggest that the oxyS RNA acts as a regulator that integrates adaptation to hydrogen peroxide with other cellular stress responses and helps to protect cells against oxidative damage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulatory mechanisms employed by cis-encoded antisense RNAs.

              Bacterial small regulatory RNAs that act by base-pairing can be divided into two classes: cis-encoded and trans-encoded antisense RNAs. The former--mainly discovered in plasmids, phages and transposons--are encoded in the same DNA locus and are therefore completely complementary to their targets over a long sequence stretch. Regulatory mechanisms employed by these RNAs encompass inhibition of primer maturation or RNA pseudoknot formation, transcriptional attenuation, inhibition of translation or promotion of RNA degradation or cleavage. Although the final product of antisense RNA/target RNA binding is a full duplex that is degraded by RNase III, inhibition does not require complete duplex formation. By contrast, in many cases, partially paired binding intermediates have been shown to be sufficient for the biological function.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                July 2007
                18 June 2007
                18 June 2007
                : 35
                : 13
                : 4331-4346
                Affiliations
                1AG Bakteriengenetik, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena D-07743, Germany and 2Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, University Departments at the Vienna Biocenter, Dr Bohrgasse 9/4, 1030 Vienna, Austria
                Author notes
                *To whom correspondence should be addressed. +49 3641 949570/571 Sabine.Brantl@ 123456rz.uni-jena.de
                Article
                10.1093/nar/gkm439
                1935000
                17576690
                c9f1c74c-7d13-4d03-8bb2-5b695e37743c
                © 2007 The Author(s)

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 April 2007
                : 16 May 2007
                : 16 May 2007
                Categories
                RNA

                Genetics
                Genetics

                Comments

                Comment on this article