31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Specificity, duplex degradation and subcellular localization of antagomirs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MicroRNAs (miRNAs) are an abundant class of 20–23-nt long regulators of gene expression. The study of miRNA function in mice and potential therapeutic approaches largely depend on modified oligonucleotides. We recently demonstrated silencing miRNA function in mice using chemically modified and cholesterol-conjugated RNAs termed ‘antagomirs’. Here, we further characterize the properties and function of antagomirs in mice. We demonstrate that antagomirs harbor optimized phosphorothioate modifications, require >19-nt length for highest efficiency and can discriminate between single nucleotide mismatches of the targeted miRNA. Degradation of different chemically protected miRNA/antagomir duplexes in mouse livers and localization of antagomirs in a cytosolic compartment that is distinct from processing (P)-bodies indicates a degradation mechanism independent of the RNA interference (RNAi) pathway. Finally, we show that antagomirs, although incapable of silencing miRNAs in the central nervous system (CNS) when injected systemically, efficiently target miRNAs when injected locally into the mouse cortex. Our data further validate the effectiveness of antagomirs in vivo and should facilitate future studies to silence miRNAs for functional analysis and in clinically relevant settings.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes.

          In the Drosophila and mammalian RNA interference pathways, siRNAs direct the protein Argonaute2 (Ago2) to cleave corresponding mRNA targets, silencing their expression. Ago2 is the catalytic component of the RNAi enzyme complex, RISC. For each siRNA duplex, only one strand, the guide, is assembled into the active RISC; the other strand, the passenger, is destroyed. An ATP-dependent helicase has been proposed first to separate the two siRNA strands, then the resulting single-stranded guide is thought to bind Ago2. Here, we show that Ago2 instead directly receives the double-stranded siRNA from the RISC assembly machinery. Ago2 then cleaves the siRNA passenger strand, thereby liberating the single-stranded guide. For siRNAs, virtually all RISC is assembled through this cleavage-assisted mechanism. In contrast, passenger-strand cleavage is not important for the incorporation of miRNAs that derive from mismatched duplexes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes.

            MicroRNAs (miRNAs) are 20-23 nucleotide (nt) RNA molecules that regulate gene expression post-transcriptionally. A key step toward understanding the function of the hundreds of miRNAs identified in animals is to determine their expression during development. Here we performed a detailed analysis of conditions for in situ detection of miRNAs in the zebrafish embryo using locked nucleic acid (LNA)-modified DNA probes and report expression patterns for 15 miRNAs in the mouse embryo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNAs: a new class of regulatory genes affecting metabolism.

              MicroRNAs (miRNAs) are short noncoding RNAs that regulate gene expression by binding to target mRNAs, which leads to reduced protein synthesis and sometimes decreased steady-state mRNA levels. Although hundreds of miRNAs have been identified, much less is known about their biological function. Several studies have provided evidence that miRNAs affect pathways that are fundamental for metabolic control in higher organisms such as adipocyte and skeletal muscle differentiation. Furthermore, some miRNAs have been implicated in lipid, amino acid, and glucose homeostasis. These studies open the possibility that miRNAs may contribute to common metabolic diseases and point to novel therapeutic opportunities based on targeting of miRNAs.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                Nucleic Acids Research
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                May 2007
                16 April 2007
                16 April 2007
                : 35
                : 9
                : 2885-2892
                Affiliations
                1Laboratory of Metabolic Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA, 2Alnylam Pharmaceuticals Inc., 300 3rd Street, Cambridge, MA 02142 USA and 3Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
                Author notes
                *To whom correspondence should be addressed. +41 44 633 4560+41 44 633 1051 stoffel@ 123456imsb.biol.ethz.ch

                Present Address: Institute for Molecular Systems Biology, Laboratory of Metabolic Diseases, ETH Zürich, Wolfgang Pauli Strasse 16, CH-8093 Zürich, Switzerland.

                Article
                10.1093/nar/gkm024
                1888827
                17439965
                cbefb06d-67e9-4c9f-b9e5-4d4df7458e25
                © 2007 The Author(s)

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 November 2006
                : 3 January 2007
                : 3 January 2007
                Categories
                RNA

                Genetics
                Genetics

                Comments

                Comment on this article