6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Variation in the Untranslated Genome and Susceptibility to Infections

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The clinical outcomes of infections are highly variable among individuals and are determined by complex host-pathogen interactions. Genome-wide association studies (GWAS) are powerful tools to unravel common genetic variations that are associated with disease risk and clinical outcomes. However, GWAS has only rarely revealed information on the exact genetic elements and their effects underlying an association because the majority of the hits are within non-coding regions. Some of the variants or the linked polymorphisms are now being discovered to have functional significance, such as regulatory elements in the promoter and enhancer regions or the microRNA binding sites in the 3′untranslated region of the protein-coding genes, which influence transcription, RNA stability, and translation of the protein-coding genes. However, only 3% of the entire transcriptome is protein-coding, signifying that non-coding RNAs represent most of the transcripts. Thus, a large portion of previously identified intergenic GWAS single nucleotide polymorphisms (SNPs) is in the non-coding RNAs. The non-coding RNAs form a large-scale regulatory network across the transcriptome, greatly expanding the complexity of gene regulation. Accumulating evidence also suggests that the “non-coding” genome regions actively regulate the highly dynamic three dimensional (3D) chromatin structures, which are critical for genome function. Epigenetic modulation like DNA methylation and histone modifications further affect chromatin accessibility and gene expression adding another layer of complexity to the functional interpretation of genetic variation associated with disease outcomes. We provide an overview of the current information on the influence of variation in these “untranslated” regions of the human genome on infectious diseases. The focus of this review is infectious disease-associated polymorphisms and gene regulatory mechanisms of pathophysiological relevance.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C.

          The protein HLA-E is a non-classical major histocompatibility complex (MHC) molecule of limited sequence variability. Its expression on the cell surface is regulated by the binding of peptides derived from the signal sequence of some other MHC class I molecules. Here we report the identification of ligands for HLA-E. We constructed tetramers in which recombinant HLA-E and beta2-microglobulin were refolded with an MHC leader-sequence peptide, biotinylated, and conjugated to phycoerythrin-labelled Extravidin. This HLA-E tetramer bound to natural killer (NK) cells and a small subset of T cells from peripheral blood. On transfectants, the tetramer bound to the CD94/NKG2A, CD94/NKGK2B and CD94/NKG2C NK cell receptors, but did not bind to the immunoglobulin family of NK cell receptors (KIR). Surface expression of HLA-E was enough to protect target cells from lysis by CD94/NKG2A+ NK-cell clones. A subset of HLA class I alleles has been shown to inhibit killing by CD94/NKG2A+ NK-cell clones. Only the HLA alleles that possess a leader peptide capable of upregulating HLA-E surface expression confer resistance to NK-cell-mediated lysis, implying that their action is mediated by HLA-E, the predominant ligand for the NK cell inhibitory receptor CD94/NKG2A.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A long noncoding RNA mediates both activation and repression of immune response genes.

            An inducible program of inflammatory gene expression is central to antimicrobial defenses. This response is controlled by a collaboration involving signal-dependent activation of transcription factors, transcriptional co-regulators, and chromatin-modifying factors. We have identified a long noncoding RNA (lncRNA) that acts as a key regulator of this inflammatory response. Pattern recognition receptors such as the Toll-like receptors induce the expression of numerous lncRNAs. One of these, lincRNA-Cox2, mediates both the activation and repression of distinct classes of immune genes. Transcriptional repression of target genes is dependent on interactions of lincRNA-Cox2 with heterogeneous nuclear ribonucleoprotein A/B and A2/B1. Collectively, these studies unveil a central role of lincRNA-Cox2 as a broad-acting regulatory component of the circuit that controls the inflammatory response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Splicing regulation: from a parts list of regulatory elements to an integrated splicing code.

              Alternative splicing of pre-mRNAs is a major contributor to both proteomic diversity and control of gene expression levels. Splicing is tightly regulated in different tissues and developmental stages, and its disruption can lead to a wide range of human diseases. An important long-term goal in the splicing field is to determine a set of rules or "code" for splicing that will enable prediction of the splicing pattern of any primary transcript from its sequence. Outside of the core splice site motifs, the bulk of the information required for splicing is thought to be contained in exonic and intronic cis-regulatory elements that function by recruitment of sequence-specific RNA-binding protein factors that either activate or repress the use of adjacent splice sites. Here, we summarize the current state of knowledge of splicing cis-regulatory elements and their context-dependent effects on splicing, emphasizing recent global/genome-wide studies and open questions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                07 September 2018
                2018
                : 9
                : 2046
                Affiliations
                [1] 1Centre for the AIDS Programme of Research in South Africa, KwaZulu-Natal Research Innovation and Sequencing Platform, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal , Durban, South Africa
                [2] 2Genetics Department, Texas Biomedical Research Institute , San Antonio, TX, United States
                Author notes

                Edited by: Eduardo Jose Melo Dos Santos, Universidade Federal do Pará, Brazil

                Reviewed by: Pei Xu, Sun Yat-sen University, China; Sophie Limou, National Cancer Institute at Frederick, United States; Arman Bashirova, Leidos Biomedical Research, Inc., United States

                *Correspondence: Smita Kulkarni skulkarni@ 123456txbiomed.org

                This article was submitted to Microbial Immunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2018.02046
                6137953
                30245696
                cd9f8884-d5f3-425c-874d-a9fd5e769e77
                Copyright © 2018 Ramsuran, Ewy, Nguyen and Kulkarni.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 April 2018
                : 20 August 2018
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 98, Pages: 8, Words: 6894
                Funding
                Funded by: South African Medical Research Council 10.13039/501100001322
                Award ID: MRC-RFA- UFSP-01- 2013/UKZN-HIVEPI
                Funded by: Sub-Saharan African Network for TB/HIV Research Excellence (SANTHE) - a DELTAS Africa Initiative Programme
                Award ID: DEL-15-006
                Categories
                Immunology
                Mini Review

                Immunology
                methylation,promoter,microrna,lncrna,polymorphism
                Immunology
                methylation, promoter, microrna, lncrna, polymorphism

                Comments

                Comment on this article