1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      n-3 Polyunsaturated fatty acids and mast cell activation

      ,
      Journal of Leukocyte Biology
      Society for Leukocyte Biology

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references146

          • Record: found
          • Abstract: found
          • Article: not found

          TNF-mediated inflammatory disease.

          JR Bradley (2008)
          TNF was originally described as a circulating factor that can cause necrosis of tumours, but has since been identified as a key regulator of the inflammatory response. This review describes the known signalling pathways and cell biological effects of TNF, and our understanding of the role of TNF in human disease. TNF interacts with two different receptors, designated TNFR1 and TNFR2, which are differentially expressed on cells and tissues and initiate both distinct and overlapping signal transduction pathways. These diverse signalling cascades lead to a range of cellular responses, which include cell death, survival, differentiation, proliferation and migration. Vascular endothelial cells respond to TNF by undergoing a number of pro-inflammatory changes, which increase leukocyte adhesion, transendothelial migration and vascular leak and promote thrombosis. The central role of TNF in inflammation has been demonstrated by the ability of agents that block the action of TNF to treat a range of inflammatory conditions, including rheumatoid arthritis, ankylosing spondylitis, inflammatory bowel disease and psoriasis. The increased incidence of infection in patients receiving anti-TNF treatment has highlighted the physiological role of TNF in infectious diseases. 2007 Pathological Society of Great Britain and Ireland
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stem cell factor receptor/c-Kit: from basic science to clinical implications.

            Stem cell factor (SCF) is a dimeric molecule that exerts its biological functions by binding to and activating the receptor tyrosine kinase c-Kit. Activation of c-Kit leads to its autophosphorylation and initiation of signal transduction. Signaling proteins are recruited to activated c-Kit by certain interaction domains (e.g., SH2 and PTB) that specifically bind to phosphorylated tyrosine residues in the intracellular region of c-Kit. Activation of c-Kit signaling has been found to mediate cell survival, migration, and proliferation depending on the cell type. Signaling from c-Kit is crucial for normal hematopoiesis, pigmentation, fertility, gut movement, and some aspects of the nervous system. Deregulated c-Kit kinase activity has been found in a number of pathological conditions, including cancer and allergy. The observation that gain-of-function mutations in c-Kit can promote tumor formation and progression has stimulated the development of therapeutics agents targeting this receptor, e.g., the clinically used inhibitor imatinib mesylate. Also other clinically used multiselective kinase inhibitors, for instance, sorafenib and sunitinib, have c-Kit included in their range of targets. Furthermore, loss-of-function mutations in c-Kit have been observed and shown to give rise to a condition called piebaldism. This review provides a summary of our current knowledge regarding structural and functional aspects of c-Kit signaling both under normal and pathological conditions, as well as advances in the development of low-molecular-weight molecules inhibiting c-Kit function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mast cells in the development of adaptive immune responses.

              Mast cells are so widely recognized as critical effector cells in allergic disorders and other immunoglobulin E-associated acquired immune responses that it can be difficult to think of them in any other context. However, mast cells also can be important as initiators and effectors of innate immunity. In addition, mast cells that are activated during innate immune responses to pathogens, or in other contexts, can secrete products and have cellular functions with the potential to facilitate the development, amplify the magnitude or regulate the kinetics of adaptive immune responses. Thus, mast cells may influence the development, intensity and duration of adaptive immune responses that contribute to host defense, allergy and autoimmunity, rather than simply functioning as effector cells in these settings.
                Bookmark

                Author and article information

                Journal
                Journal of Leukocyte Biology
                Journal of Leukocyte Biology
                Society for Leukocyte Biology
                07415400
                May 2015
                May 2015
                March 12 2015
                : 97
                : 5
                : 859-871
                Article
                10.1189/jlb.2RU0814-388R
                ce5b708f-cf7a-48e2-88ac-3f81a257cb63
                © 2015

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article