13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Personalization of Logical Models With Multi-Omics Data Allows Clinical Stratification of Patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Logical models of cancer pathways are typically built by mining the literature for relevant experimental observations. They are usually generic as they apply for large cohorts of individuals. As a consequence, they generally do not capture the heterogeneity of patient tumors and their therapeutic responses. We present here a novel framework, referred to as PROFILE, to tailor logical models to a particular biological sample such as a patient tumor. This methodology permits to compare the model simulations to individual clinical data, i.e., survival time. Our approach focuses on integrating mutation data, copy number alterations (CNA), and expression data (transcriptomics or proteomics) to logical models. These data need first to be either binarized or set between 0 and 1, and can then be incorporated in the logical model by modifying the activity of the node, the initial conditions or the state transition rates. The use of MaBoSS, a tool based on Monte-Carlo kinetic algorithm to perform stochastic simulations on logical models results in model state probabilities, and allows for a semi-quantitative study of the model phenotypes and perturbations. As a proof of concept, we use a published generic model of cancer signaling pathways and molecular data from METABRIC breast cancer patients. For this example, we test several combinations of data incorporation and discuss that, with these data, the most comprehensive patient-specific cancer models are obtained by modifying the nodes' activity of the model with mutations, in combination or not with CNA data, and altering the transition rates with RNA expression. We conclude that these model simulations show good correlation with clinical data such as patients' Nottingham prognostic index (NPI) subgrouping and survival time. We observe that two highly relevant cancer phenotypes derived from personalized models, Proliferation and Apoptosis, are biologically consistent prognostic factors: patients with both high proliferation and low apoptosis have the worst survival rate, and conversely. Our approach aims to combine the mechanistic insights of logical modeling with multi-omics data integration to provide patient-relevant models. This work leads to the use of logical modeling for precision medicine and will eventually facilitate the choice of patient-specific drug treatments by physicians.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.

          The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle.

            To understand the behaviour of complex biological regulatory networks, a proper integration of molecular data into a full-fledge formal dynamical model is ultimately required. As most available data on regulatory interactions are qualitative, logical modelling offers an interesting framework to delineate the main dynamical properties of the underlying networks. Transposing a generic model of the core network controlling the mammalian cell cycle into the logical framework, we compare different strategies to explore its dynamical properties. In particular, we assess the respective advantages and limits of synchronous versus asynchronous updating assumptions to delineate the asymptotical behaviour of regulatory networks. Furthermore, we propose several intermediate strategies to optimize the computation of asymptotical properties depending on available knowledge. The mammalian cell cycle model is available in a dedicated XML format (GINML) on our website, along with our logical simulation software GINsim (http://gin.univ-mrs.fr/GINsim). Higher resolution state transitions graphs are also found on this web site (Model Repository page).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitative and logic modelling of molecular and gene networks.

              Behaviours of complex biomolecular systems are often irreducible to the elementary properties of their individual components. Explanatory and predictive mathematical models are therefore useful for fully understanding and precisely engineering cellular functions. The development and analyses of these models require their adaptation to the problems that need to be solved and the type and amount of available genetic or molecular data. Quantitative and logic modelling are among the main methods currently used to model molecular and gene networks. Each approach comes with inherent advantages and weaknesses. Recent developments show that hybrid approaches will become essential for further progress in synthetic biology and in the development of virtual organisms.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                24 January 2019
                2018
                : 9
                : 1965
                Affiliations
                Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900 , Paris, France
                Author notes

                Edited by: Matteo Barberis, University of Surrey, United Kingdom

                Reviewed by: Olaf Wolkenhauer, University of Rostock, Germany; Maximino Aldana, National Autonomous University of Mexico, Mexico

                *Correspondence: Emmanuel Barillot emmanuel.barillot@ 123456curie.fr

                This article was submitted to Systems Biology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2018.01965
                6353844
                30733688
                cfd5e867-ae84-4744-82ea-1ab95cd109d8
                Copyright © 2019 Béal, Montagud, Traynard, Barillot and Calzone.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 March 2018
                : 31 December 2018
                Page count
                Figures: 10, Tables: 0, Equations: 13, References: 49, Pages: 18, Words: 11526
                Funding
                Funded by: Horizon 2020 Framework Programme 10.13039/501100004562
                Award ID: 668858
                Funded by: Ministère de l'Education Nationale, de l'Enseignement Superieur et de la Recherche 10.13039/501100004562
                Categories
                Physiology
                Original Research

                Anatomy & Physiology
                logical models,personalized mechanistic models,personalized medicine,breast cancer,data discretization,stochastic simulations

                Comments

                Comment on this article