1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of Pre-symptomatic Gene Signatures That Predict Resilience to Cognitive Decline in the Genetically Diverse AD-BXD Model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Across the population, individuals exhibit a wide variation of susceptibility or resilience to developing Alzheimer’s disease (AD). Identifying specific factors that promote resilience would provide insight into disease mechanisms and nominate potential targets for therapeutic intervention. Here, we use transcriptome profiling to identify gene networks present in the pre-symptomatic AD mouse brain relating to neuroinflammation, brain vasculature, extracellular matrix organization, and synaptic signaling that predict cognitive performance at an advanced age. We highlight putative drivers of these observed relationships, including Itgb2, Fcgr2b, Slc6a14, and Gper1, which represent prime targets through which to promote resilience prior to overt symptom onset. In addition, we identify a genomic region on chromosome 2 containing variants that directly modulate resilience network expression. Overall, work here highlights new potential drivers of resilience to AD and contributes significantly to our understanding of early, potentially causal, disease mechanisms.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Diversity and dynamics of the Drosophila transcriptome

          Animal transcriptomes are dynamic, each cell type, tissue and organ system expressing an ensemble of transcript isoforms that give rise to substantial diversity. We identified new genes, transcripts, and proteins using poly(A)+ RNA sequence from Drosophila melanogaster cultured cell lines, dissected organ systems, and environmental perturbations. We found a small set of mostly neural-specific genes has the potential to encode thousands of transcripts each through extensive alternative promoter usage and RNA splicing. The magnitudes of splicing changes are larger between tissues than between developmental stages, and most sex-specific splicing is gonad-specific. Gonads express hundreds of previously unknown coding and long noncoding RNAs (lncRNAs) some of which are antisense to protein-coding genes and produce short regulatory RNAs. Furthermore, previously identified pervasive intergenic transcription occurs primarily within newly identified introns. The fly transcriptome is substantially more complex than previously recognized arising from combinatorial usage of promoters, splice sites, and polyadenylation sites.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular mechanisms of neurodegeneration in Alzheimer's disease.

            Alzheimer's disease (AD) is characterized by cognitive impairment, progressive neurodegeneration and formation of amyloid-beta (Abeta)-containing plaques and neurofibrillary tangles composed of hyperphosphorylated tau. The neurodegenerative process in AD is initially characterized by synaptic damage accompanied by neuronal loss. In addition, recent evidence suggests that alterations in adult neurogenesis in the hippocampus might play a role. Synaptic loss is one of the strongest correlates to the cognitive impairment in patients with AD. Several lines of investigation support the notion that the synaptic pathology and defective neurogenesis in AD are related to progressive accumulation of Abeta oligomers rather than fibrils. Abnormal accumulation of Abeta resulting in the formation of toxic oligomers is the result of an imbalance between the levels of Abeta production, aggregation and clearance. Abeta oligomers might lead to synaptic damage by forming pore-like structures with channel activity; alterations in glutamate receptors; circuitry hyper-excitability; mitochondrial dysfunction; lysosomal failure and alterations in signaling pathways related to synaptic plasticity, neuronal cell and neurogenesis. A number of signaling proteins, including fyn kinase; glycogen synthase kinase-3beta (GSK3beta) and cyclin-dependent kinase-5 (CDK5), are involved in the neurodegenerative progression of AD. Therapies for AD might require the development of anti-aggregation compounds, pro-clearance pathways and blockers of hyperactive signaling pathways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A new set of BXD recombinant inbred lines from advanced intercross populations in mice

              Background Recombinant inbred (RI) strains are an important resource for mapping complex traits in many species. While large RI panels are available for Arabidopsis, maize, C. elegans, and Drosophila, mouse RI panels typically consist of fewer than 30 lines. This is a severe constraint on the power and precision of mapping efforts and greatly hampers analysis of epistatic interactions. Results In order to address these limitations and to provide the community with a more effective collaborative RI mapping panel we generated new BXD RI strains from two independent advanced intercrosses (AI) between C57BL/6J (B6) and DBA/2J (D2) progenitor strains. Progeny were intercrossed for 9 to 14 generations before initiating inbreeding, which is still ongoing for some strains. Since this AI base population is highly recombinant, the 46 advanced recombinant inbred (ARI) strains incorporate approximately twice as many recombinations as standard RI strains, a fraction of which are inevitably shared by descent. When combined with the existing BXD RI strains, the merged BXD strain set triples the number of previously available unique recombinations and quadruples the total number of recombinations in the BXD background. Conclusion The combined BXD strain set is the largest mouse RI mapping panel. It is a powerful tool for collaborative analysis of quantitative traits and gene function that will be especially useful to study variation in transcriptome and proteome data sets under multiple environments. Additional strains also extend the value of the extensive phenotypic characterization of the previously available strains. A final advantage of expanding the BXD strain set is that both progenitors have been sequenced, and approximately 1.8 million SNPs have been characterized. This provides unprecedented power in screening candidate genes and can reduce the effective length of QTL intervals. It also makes it possible to reverse standard mapping strategies and to explore downstream effects of known sequence variants.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                06 February 2019
                2019
                : 10
                : 35
                Affiliations
                [1] 1University of Tennessee Health Science Center , Memphis, TN, United States
                [2] 2The Jackson Laboratory , Bar Harbor, ME, United States
                [3] 3Tufts University Sackler School of Graduate Biomedical Sciences , Boston, MA, United States
                Author notes

                Edited by: Rupert W. Overall, German Center for Neurodegenerative Diseases (DZNE), Germany

                Reviewed by: Nathan T. Mortimer, Illinois State University, United States; Claes Wahlestedt, Leonard M. Miller School of Medicine, United States

                *Correspondence: Catherine C. Kaczorowski, catherine.kaczorowski@ 123456jax.org

                This article was submitted to Neurogenomics, a section of the journal Frontiers in Genetics

                Article
                10.3389/fgene.2019.00035
                6372563
                30787942
                d38fdbf4-b871-4c67-a6d4-a36d581b1dfe
                Copyright © 2019 Neuner, Heuer, Zhang, Philip and Kaczorowski.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 August 2018
                : 18 January 2019
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 50, Pages: 12, Words: 0
                Funding
                Funded by: National Institute on Aging 10.13039/100000049
                Categories
                Genetics
                Original Research

                Genetics
                resilience,network analysis,alzheimer’s,susceptibility,genetics,transcriptomics
                Genetics
                resilience, network analysis, alzheimer’s, susceptibility, genetics, transcriptomics

                Comments

                Comment on this article