Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Menthol to Induce Non-shivering Thermogenesis via TRPM8/PKA Signaling for Treatment of Obesity

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increasing basal energy expenditure via uncoupling protein 1 (UCP1)-dependent non-shivering thermogenesis is an attractive therapeutic strategy for treatment of obesity. Transient receptor potential melastatin 8 (TRPM8) channel activation by cold and cold mimetics induces UCP1 transcription and prevents obesity in animals, but the clinical relevance of this relationship remains incompletely understood. A review of TRPM8 channel agonism for treatment of obesity focusing on menthol was undertaken. Adipocyte TRPM8 activation results in Ca 2+ influx and protein kinase A (PKA) activation, which induces mitochondrial elongation, mitochondrial localization to lipid droplets, lipolysis, β-oxidation, and UCP1 expression. Ca 2+-induced mitochondrial reactive oxygen species activate UCP1. In animals, TRPM8 agonism increases basal metabolic rate, non-shivering thermogenesis, oxygen consumption, exercise endurance, and fatty acid oxidation and decreases abdominal fat percentage. Menthol prevents high-fat diet-induced obesity, glucose intolerance, insulin resistance, and liver triacylglycerol accumulation. Hypothalamic TRPM8 activation releases glucagon, which activates PKA and promotes catabolism. TRPM8 polymorphisms are associated with obesity. In humans, oral menthol and other TRPM8 agonists have little effect. However, topical menthol appears to increase core body temperature and metabolic rate. A randomized clinical control trial of topical menthol in obese patients is warranted.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human.

          Brown fat generates heat via the mitochondrial uncoupling protein UCP1, defending against hypothermia and obesity. Recent data suggest that there are two distinct types of brown fat: classical brown fat derived from a myf-5 cellular lineage and UCP1-positive cells that emerge in white fat from a non-myf-5 lineage. Here, we report the isolation of "beige" cells from murine white fat depots. Beige cells resemble white fat cells in having extremely low basal expression of UCP1, but, like classical brown fat, they respond to cyclic AMP stimulation with high UCP1 expression and respiration rates. Beige cells have a gene expression pattern distinct from either white or brown fat and are preferentially sensitive to the polypeptide hormone irisin. Finally, we provide evidence that previously identified brown fat deposits in adult humans are composed of beige adipocytes. These data provide a foundation for studying this mammalian cell type with therapeutic potential. PAPERCLIP: Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cold-activated brown adipose tissue in healthy men.

            Studies in animals indicate that brown adipose tissue is important in the regulation of body weight, and it is possible that individual variation in adaptive thermogenesis can be attributed to variations in the amount or activity of brown adipose tissue. Until recently, the presence of brown adipose tissue was thought to be relevant only in small mammals and infants, with negligible physiologic relevance in adult humans. We performed a systematic examination of the presence, distribution, and activity of brown adipose tissue in lean and obese men during exposure to cold temperature. Brown-adipose-tissue activity was studied in relation to body composition and energy metabolism. We studied 24 healthy men--10 who were lean (body-mass index [BMI] [the weight in kilograms divided by the square of the height in meters], or = 25)--under thermoneutral conditions (22 degrees C) and during mild cold exposure (16 degrees C). Putative brown-adipose-tissue activity was determined with the use of integrated (18)F-fluorodeoxyglucose positron-emission tomography and computed tomography. Body composition and energy expenditure were measured with the use of dual-energy x-ray absorptiometry and indirect calorimetry. Brown-adipose-tissue activity was observed in 23 of the 24 subjects (96%) during cold exposure but not under thermoneutral conditions. The activity was significantly lower in the overweight or obese subjects than in the lean subjects (P=0.007). BMI and percentage of body fat both had significant negative correlations with brown adipose tissue, whereas resting metabolic rate had a significant positive correlation. The percentage of young men with brown adipose tissue is high, but its activity is reduced in men who are overweight or obese. Brown adipose tissue may be metabolically important in men, and the fact that it is reduced yet present in most overweight or obese subjects may make it a target for the treatment of obesity. 2009 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The menthol receptor TRPM8 is the principal detector of environmental cold.

              Sensory nerve fibres can detect changes in temperature over a remarkably wide range, a process that has been proposed to involve direct activation of thermosensitive excitatory transient receptor potential (TRP) ion channels. One such channel--TRP melastatin 8 (TRPM8) or cold and menthol receptor 1 (CMR1)--is activated by chemical cooling agents (such as menthol) or when ambient temperatures drop below approximately 26 degrees C, suggesting that it mediates the detection of cold thermal stimuli by primary afferent sensory neurons. However, some studies have questioned the contribution of TRPM8 to cold detection or proposed that other excitatory or inhibitory channels are more critical to this sensory modality in vivo. Here we show that cultured sensory neurons and intact sensory nerve fibres from TRPM8-deficient mice exhibit profoundly diminished responses to cold. These animals also show clear behavioural deficits in their ability to discriminate between cold and warm surfaces, or to respond to evaporative cooling. At the same time, TRPM8 mutant mice are not completely insensitive to cold as they avoid contact with surfaces below 10 degrees C, albeit with reduced efficiency. Thus, our findings demonstrate an essential and predominant role for TRPM8 in thermosensation over a wide range of cold temperatures, validating the hypothesis that TRP channels are the principal sensors of thermal stimuli in the peripheral nervous system.
                Bookmark

                Author and article information

                Journal
                J Obes Metab Syndr
                J Obes Metab Syndr
                Journal of Obesity & Metabolic Syndrome
                Korean Society for the Study of Obesity
                2508-6235
                2508-7576
                30 March 2021
                19 October 2020
                19 October 2020
                : 30
                : 1
                : 4-11
                Affiliations
                [1 ]Department of Biology, Portland State University, Portland, OR, USA
                [2 ]Department of Pathology, D.Y. Patil Medical College, Kolhapur, India
                [3 ]Oto-Rhino-Laryngology, College of Physicians and Surgeons, Mumbai, India
                Author notes
                [* ] Corresponding author Owen Davis Sanders https://orcid.org/0000-0003-4093-3166 Department of Biology, Portland State University, 1777 NW 173rd Ave, #610, Beaverton, OR 97006, USA Tel: +1-503-809-1333 Fax: +1-503-725-4882 E-mail: owensanders@ 123456gmail.com
                Author information
                https://orcid.org/0000-0003-4093-3166
                Article
                jomes-30-1-4
                10.7570/jomes20038
                8017329
                33071240
                d484d2c7-f449-4db2-95c4-4bb644ea35ac
                Copyright © 2021 Korean Society for the Study of Obesity

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 April 2020
                : 25 May 2020
                : 12 June 2020
                Categories
                Review

                obesity,weight loss,mitochondrial uncoupling proteins,brown adipose tissue,thermogenesis

                Comments

                Comment on this article