58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exome Sequencing Identifies ZNF644 Mutations in High Myopia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Myopia is the most common ocular disorder worldwide, and high myopia in particular is one of the leading causes of blindness. Genetic factors play a critical role in the development of myopia, especially high myopia. Recently, the exome sequencing approach has been successfully used for the disease gene identification of Mendelian disorders. Here we show a successful application of exome sequencing to identify a gene for an autosomal dominant disorder, and we have identified a gene potentially responsible for high myopia in a monogenic form. We captured exomes of two affected individuals from a Han Chinese family with high myopia and performed sequencing analysis by a second-generation sequencer with a mean coverage of 30× and sufficient depth to call variants at ∼97% of each targeted exome. The shared genetic variants of these two affected individuals in the family being studied were filtered against the 1000 Genomes Project and the dbSNP131 database. A mutation A672G in zinc finger protein 644 isoform 1 ( ZNF644) was identified as being related to the phenotype of this family. After we performed sequencing analysis of the exons in the ZNF644 gene in 300 sporadic cases of high myopia, we identified an additional five mutations (I587V, R680G, C699Y, 3′UTR+12 C>G, and 3′UTR+592 G>A) in 11 different patients. All these mutations were absent in 600 normal controls. The ZNF644 gene was expressed in human retinal and retinal pigment epithelium (RPE). Given that ZNF644 is predicted to be a transcription factor that may regulate genes involved in eye development, mutation may cause the axial elongation of eyeball found in high myopia patients. Our results suggest that ZNF644 might be a causal gene for high myopia in a monogenic form.

          Author Summary

          People with myopia see near objects more clearly than objects far away. Myopia is the most common ocular disorder worldwide, with a high prevalence in Asian (40%–70%) and Caucasian (20%–30%) populations. Although the etiologies of myopia have not yet been established, previous studies have indicated the involvement of genetic and environmental factors (such as close working habits, higher education levels, and higher socioeconomic class). Genetic factors play a critical role in the development of myopia, especially high myopia. In this study, we use exome sequencing, a powerful tool for a disease gene identification, to identify a gene involved in high myopia in a monogenic form among Han Chinese. Mutations in zinc finger protein 644 isoform 1 ( ZNF644) were identified as potentially responsible for the phenotype of high myopia. The main feature of high myopia is axial elongation of the eye globe. Given that ZNF644 is predicted to be a transcription factor that may regulate genes involved in eye development, a mutant ZNF644 protein may impact the normal eye development and therefore may underlie the axial elongation of the eye globe in high myopia patients. Further study of the biological function of ZNF644 will provide insight into the pathogenesis of myopia.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of genetic inheritance in a family quartet by whole-genome sequencing.

          We analyzed the whole-genome sequences of a family of four, consisting of two siblings and their parents. Family-based sequencing allowed us to delineate recombination sites precisely, identify 70% of the sequencing errors (resulting in > 99.999% accuracy), and identify very rare single-nucleotide polymorphisms. We also directly estimated a human intergeneration mutation rate of approximately 1.1 x 10(-8) per position per haploid genome. Both offspring in this family have two recessive disorders: Miller syndrome, for which the gene was concurrently identified, and primary ciliary dyskinesia, for which causative genes have been previously identified. Family-based genome analysis enabled us to narrow the candidate genes for both of these Mendelian disorders to only four. Our results demonstrate the value of complete genome sequencing in families.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia.

            We sequenced all protein-coding regions of the genome (the "exome") in two family members with combined hypolipidemia, marked by extremely low plasma levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, and triglycerides. These two participants were compound heterozygotes for two distinct nonsense mutations in ANGPTL3 (encoding the angiopoietin-like 3 protein). ANGPTL3 has been reported to inhibit lipoprotein lipase and endothelial lipase, thereby increasing plasma triglyceride and HDL cholesterol levels in rodents. Our finding of ANGPTL3 mutations highlights a role for the gene in LDL cholesterol metabolism in humans and shows the usefulness of exome sequencing for identification of novel genetic causes of inherited disorders. (Funded by the National Human Genome Research Institute and others.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Causes of blindness and visual impairment in urban and rural areas in Beijing: the Beijing Eye Study.

              To evaluate the causes of visual impairment and blindness in adult Chinese in an urban and rural region of Beijing, China. Population-based prevalence survey. From a rural region and an urban region of Greater Beijing, 4439 of 5324 > or=40-year-old invited subjects participated in the study (response rate, 83.4%). Using the World Health Organization (WHO) standard and the United States standard, blindness was defined as best-corrected visual acuity (BCVA) in the better-seeing eye of or =20/400, and of or =2/20, respectively. Determination of BCVA, pneumotonometry, frequency doubling perimetry, evaluation of photographs of the fundus and lens, and clinical examination. Causes of visual impairment and blindness. Visual acuity measurements were available for 8816 eyes of 4409 subjects (99.3%). Using the WHO standard and the U.S. standard, 49 (1.1%) subjects and 95 (2.2%) subjects, respectively, had low vision, and 13 (0.3%) subjects and 15 (0.3%) subjects, respectively, were blind by definition. Taking the whole study population, the most frequent cause of low vision/blindness was cataract (36.7%/38.5%), followed by degenerative myopia (32.7%/7.7%), glaucoma (14.3%/7.7%), corneal opacity (6.1%/15.4%), and other optic nerve damage (2.0%/7.7%). Age-related macular degeneration (AMD) (2.0%/7.7%) and diabetic retinopathy (0%/7.7%) were responsible for a minority of cases. In subjects 40 to 49 years old, the most frequent cause of low vision and blindness was degenerative myopia. In the 50- to 59-year age group, the most frequent cause was cataract, followed by degenerative myopia. In the 60- to 69-year-old subjects and the > or =70-year group, the most frequent cause of low vision and blindness was cataract, followed by degenerative myopia and glaucoma. The most frequent cause of low vision and blindness in adult Chinese is cataract, followed by degenerative myopia and glaucomatous optic neuropathy, with degenerative myopia dominating in younger groups and cataract dominating in elder groups. In contrast to studies in Western countries, AMD and diabetic retinopathy appear to play a minor role as a cause of visual impairment in elderly Chinese.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                June 2011
                June 2011
                9 June 2011
                : 7
                : 6
                : e1002084
                Affiliations
                [1 ]The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
                [2 ]Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
                [3 ]Beijing Genome Institute at Shenzhen, Shenzhen, China
                [4 ]Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
                [5 ]Innovative Program for Undergraduate Students, School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, China
                [6 ]The Department of Ophthalmology, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China
                Yale University, United States of America
                Author notes

                Conceived and designed the experiments: Zhenglin Yang. Performed the experiments: Yi Shi, Dingding Zhang, Yuanfeng Li, Fang Lu, Fei Hi, Bo Gong, Li Cai, Shi Ma, He Lin, Jing Cheng, Ying Lin, Zhenglin Yang. Analyzed the data: Yingrui Li, Hao Zhang, Xiaoqi Liu, Ruiqiang Li, Hancheng Zheng, Ying Shan, Xin Jin, Yong Zhang, Xi Li, Huanming Yang, Jun Wang, Zhenglin Yang. Contributed reagents/materials/analysis tools: Shihuang Liao, Bin Chen, Yingchuan Fan, Jianbin Hu, Peiquan Zhao, Yiye Chen, Zhenglin Yang. Wrote the paper: Yi Shi, Zhenglin Yang. Obtained the funding: Yi Shi, Fang Lu, Zhenglin Yang.

                Article
                PGENETICS-D-11-00140
                10.1371/journal.pgen.1002084
                3111487
                21695231
                d5af80f3-c3d5-4aeb-9b11-7fd8d9623d39
                Shi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 18 January 2011
                : 31 March 2011
                Page count
                Pages: 10
                Categories
                Research Article
                Biology
                Genetics
                Human Genetics
                Autosomal Dominant
                Gene Expression
                Genetic Mutation
                Molecular Genetics

                Genetics
                Genetics

                Comments

                Comment on this article