35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome

      research-article
      1 , 2 , 3 ,
      BMC Genomics
      BioMed Central

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The classical C2H2 zinc finger domain is involved in a wide range of functions and can bind to DNA, RNA and proteins. The comparison of zinc finger proteins in several eukaryotes has shown that there is a lot of lineage specific diversification and expansion. Although the number of characterized plant proteins that carry the classical C2H2 zinc finger motifs is growing, a systematic classification and analysis of a plant genome zinc finger gene set is lacking.

          Results

          We found through in silico analysis 176 zinc finger proteins in Arabidopsis thaliana that hence constitute the most abundant family of putative transcriptional regulators in this plant. Only a minority of 33 A. thaliana zinc finger proteins are conserved in other eukaryotes. In contrast, the majority of these proteins (81%) are plant specific. They are derived from extensive duplication events and form expanded families. We assigned the proteins to different subgroups and families and focused specifically on the two largest and evolutionarily youngest families (A1 and C1) that are suggested to be primarily involved in transcriptional regulation. The newly defined family A1 (24 members) comprises proteins with tandemly arranged zinc finger domains. Family C1 (64 members), earlier described as the EPF-family in Petunia, comprises proteins with one isolated or two to five dispersed fingers and a mostly invariant QALGGH motif in the zinc finger helices. Based on the amino acid pattern in these helices we could describe five different signature sequences prevalent in C1 zinc finger domains. We also found a number of non-finger domains that are conserved in these families.

          Conclusions

          Our analysis of the few evolutionarily conserved zinc finger proteins of A. thaliana suggests that most of them could be involved in ancient biological processes like RNA metabolism and chromatin-remodeling. In contrast, the majority of the unique A. thaliana zinc finger proteins are known or suggested to be involved in transcriptional regulation. They exhibit remarkable differences in the features of their zinc finger sequences and zinc finger arrangements compared to animal zinc finger proteins. The different zinc finger helix signatures we found in family C1 may have important implications for the sequence specific DNA recognition and allow inferences about the evolution of the members in this family.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          The Pfam protein families database.

          Pfam is a large collection of protein families and domains. Over the past 2 years the number of families in Pfam has doubled and now stands at 6190 (version 10.0). Methodology improvements for searching the Pfam collection locally as well as via the web are described. Other recent innovations include modelling of discontinuous domains allowing Pfam domain definitions to be closer to those found in structure databases. Pfam is available on the web in the UK (http://www.sanger.ac.uk/Software/Pfam/), the USA (http://pfam.wustl.edu/), France (http://pfam.jouy.inra.fr/) and Sweden (http://Pfam.cgb.ki.se/).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SMART 4.0: towards genomic data integration.

            SMART (Simple Modular Architecture Research Tool) is a web tool (http://smart.embl.de/) for the identification and annotation of protein domains, and provides a platform for the comparative study of complex domain architectures in genes and proteins. The January 2004 release of SMART contains 685 protein domains. New developments in SMART are centred on the integration of data from completed metazoan genomes. SMART now uses predicted proteins from complete genomes in its source sequence databases, and integrates these with predictions of orthology. New visualization tools have been developed to allow analysis of gene intron-exon structure within the context of protein domain structure, and to align these displays to provide schematic comparisons of orthologous genes, or multiple transcripts from the same gene. Other improvements include the ability to query SMART by Gene Ontology terms, improved structure database searching and batch retrieval of multiple entries.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Repression domains of class II ERF transcriptional repressors share an essential motif for active repression.

              We reported previously that three ERF transcription factors, tobacco ERF3 (NtERF3) and Arabidopsis AtERF3 and AtERF4, which are categorized as class II ERFs, are active repressors of transcription. To clarify the roles of these repressors in transcriptional regulation in plants, we attempted to identify the functional domains of the ERF repressor that mediates the repression of transcription. Analysis of the results of a series of deletions revealed that the C-terminal 35 amino acids of NtERF3 are sufficient to confer the capacity for repression of transcription on a heterologous DNA binding domain. This repression domain suppressed the intermolecular activities of other transcriptional activators. In addition, fusion of this repression domain to the VP16 activation domain completely inhibited the transactivation function of VP16. Comparison of amino acid sequences of class II ERF repressors revealed the conservation of the sequence motif (L)/(F)DLN(L)/(F)(x)P. This motif was essential for repression because mutations within the motif eliminated the capacity for repression. We designated this motif the ERF-associated amphiphilic repression (EAR) motif, and we identified this motif in a number of zinc-finger proteins from wheat, Arabidopsis, and petunia plants. These zinc finger proteins functioned as repressors, and their repression domains were identified as regions that contained an EAR motif.
                Bookmark

                Author and article information

                Journal
                BMC Genomics
                BMC Genomics
                BioMed Central (London )
                1471-2164
                2004
                5 July 2004
                : 5
                : 39
                Affiliations
                [1 ]GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Bioinformatik, Ingolstädter Landstrasse1, D-85764 Neuherberg, Germany
                [2 ]Technische Universität München, Chair of Genome Oriented Bioinformatics, Center of Life and Food Science, D-85354 Freising-Weihenstephan, Germany
                [3 ]Max-Delbrück-Centrum für Molekulare Medizin, Department of Genetics, Bioinformatics and Structural Biology, Robert-Rössle-Strasse 10, D-13125 Berlin-Buch, Germany
                Article
                1471-2164-5-39
                10.1186/1471-2164-5-39
                481060
                15236668
                dc4363c9-f722-4fb0-89c4-27f39782eb27
                Copyright © 2004 Englbrecht et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
                History
                : 16 March 2004
                : 5 July 2004
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article