13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Endothelial Cell E- and P-Selectin and Vascular Cell Adhesion Molecule-1 Function as Signaling Receptors

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previous studies have shown that polymorphonuclear leukocyte (PMN) adherence to endothelial cells (EC) induces transient increases in EC cytosolic free calcium concentration ([Ca 2+] i) that are required for PMN transit across the EC barrier (Huang, A.J., J.E. Manning, T.M. Bandak, M.C. Ratau, K.R. Hanser, and S.C. Silverstein. 1993. J. Cell Biol. 120:1371–1380). To determine whether stimulation of [Ca 2+] i changes in EC by leukocytes was induced by the same molecules that mediate leukocyte adherence to EC, [Ca 2+] i was measured in Fura2-loaded human EC monolayers. Expression of adhesion molecules by EC was induced by a pretreatment of the cells with histamine or with Escherichia coli lipopolysaccharide (LPS), and [Ca 2+] i was measured in single EC after the addition of mAbs directed against the EC adhesion proteins P-selectin, E-selectin, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), or platelet/endothelial cell adhesion molecule-1 (PECAM-1). Both anti–P- and anti–E-selectin mAb, as well as anti–VCAM-1 mAb, induced transient increases in EC [Ca 2+] i that were comparable to those induced by 200 μM histamine. In contrast, no effect was obtained by mAbs directed against the endothelial ICAM-1 or PECAM-1. PMN adherence directly stimulated increases in [Ca 2+] i in histamine- or LPS-treated EC. mAbs directed against leukocyte CD18 or PECAM-1, the leukocyte counter-receptors for endothelial ICAM-1 and PECAM-1, respectively, did not inhibit PMN-induced EC activation. In contrast, mAb directed against sialyl Lewis x (sLe x), a PMN ligand for endothelial P- and E-selectin, completely inhibited EC stimulation by adherent PMN. Changes in EC [Ca 2+] i were also observed after adherence of peripheral blood monocytes to EC treated with LPS for 5 or 24 h. In these experiments, the combined addition of mAbs to sLe x and VLA-4, the leukocyte counter-receptor for endothelial VCAM-1, inhibited [Ca 2+] i changes in the 5 h–treated EC, whereas the anti–VLA-4 mAb alone was sufficient to inhibit [Ca 2+] i changes in the 24 h-treated EC. Again, no inhibitory effect was observed with an anti-CD18 or anti–PECAM-1 mAb. Of note, the conditions that induced changes in EC [Ca 2+] i, i.e., mAbs directed against endothelial selectins or VCAM-1, and PMN or monocyte adhesion to EC via selectins or VCAM-1, but not via ICAM-1 or PECAM-1, also induced a rearrangement of EC cytoskeletal microfilaments from a circumferential ring to stress fibers. We conclude that, in addition to their role as adhesion receptors, endothelial selectins and VCAM-1 mediate endothelial stimulation by adhering leukocytes.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Leukocyte-endothelial adhesion molecules.

          In the 9 years since the last review on leukocyte and endothelial interactions was published in this journal many of the critical structures involved in leukocyte adherence to and migration across endothelium have been elucidated. With the advent of cell and molecular biology approaches, investigations have progressed from the early descriptions by intravital microscopy and histology, to functional and immunologic characterization of adhesion molecules, and now to the development of genetically deficient animals and the first phase I trial of "anti-adhesion" therapy in humans. The molecular cloning and definition of the adhesive functions of the leukocyte integrins, endothelial members of the Ig gene superfamily, and the selectins has already provided sufficient information to construct an operative paradigm of the molecular basis of leukocyte emigration. The regulation of these adhesion molecules by chemoattractants, cytokines, or chemokines, and the interrelationships of adhesion pathways need to be examined in vitro and, particularly, in vivo. Additional studies are required to dissect the contribution of the individual adhesion molecules to leukocyte emigration in various models of inflammation or immune reaction. Certainly, new adhesion structures will be identified, and the current paradigm of leukocyte emigration will be refined. The promise of new insights into the biology and pathology of the inflammatory and immune response, and the potential for new therapies for a wide variety of diseases assures that this will continue to be an exciting area of investigation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            P- and E-selectin mediate recruitment of T-helper-1 but not T-helper-2 cells into inflammed tissues.

            When activated, T helper cells differentiate into one of two subsets, Th1 and Th2, characterized by distinct profiles of cytokine production. Th1 cells activate pro-inflammatory effector mechanisms involved in protection and autoimmunity, whereas Th2 cells induce humoral and allergic responses and downregulate local inflammation. Apart from differences in the repertoire of cytokines, no phenotypic attributes are established that distinguish the two subsets. Here we show that Th1 cells, but not Th2 cells, are able to bind to P-selectin and E-selectin. Moreover, only Th1 cells can efficiently enter inflamed sites in Th1-dominated models, such as sensitized skin or arthritic joints, but not in a Th2-dominated allergic response. Immigration of Th1 cells into inflamed skin can be blocked by antibodies against P- and E-selectin. These results provide evidence for adhesion mechanisms to distinguish between the two T helper subsets and mediate their differential trafficking. They indicate that selective recruitment is an additional level of regulation for both effector function profile and character of a local immune response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Induction by IL 1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1).

              ICAM-1 is a cell surface glycoprotein originally defined by a monoclonal antibody (MAb) that inhibits phorbol ester-stimulated leukocyte aggregation. Staining of frozen sections and immunofluorescence flow cytometry showed intercellular adhesion molecule-1 (ICAM-1) is expressed on non-hematopoietic cells such as vascular endothelial cells, thymic epithelial cells, certain other epithelial cells, and fibroblasts, and on hematopoietic cells such as tissue macrophages, mitogen-stimulated T lymphocyte blasts, and germinal center dendritic cells in tonsils, lymph nodes, and Peyer's patches. ICAM-1 staining on vascular endothelial cells is most intense in T cell areas in lymph nodes and tonsils showing reactive hyperplasia. ICAM-1 is expressed in low amounts on peripheral blood leukocytes. Phorbol ester-stimulated differentiation of myelomonocytic cell lines greatly increases ICAM-1 expression. ICAM-1 expression on dermal fibroblasts is increased threefold to fivefold by either interleukin 1 (IL 1) or interferon-gamma at 10 U/ml over a period of 4 or 10 hr, respectively. The induction is dependent on protein and mRNA synthesis and is reversible. ICAM-1 displays Mr heterogeneity in different cell types with a Mr of 97,000 on fibroblasts, 114,000 on the myelomonocytic cell line U937, and 90,000 on the B lymphoblastoid cell JY. ICAM-1 biosynthesis involves a Mr approximately 73,000 intracellular precursor. The non-N-glycosylated form resulting from tunicamycin treatment has a Mr of 55,000. ICAM-1 isolated from phorbol myristic acetate (PMA) stimulated U937 and from fibroblasts yields an identical major product of Mr = 60,000 after chemical deglycosylation. ICAM-1 MAb interferes with the adhesion of phytohemagglutinin blasts, and the adhesion of the cell line SKW3 to human dermal fibroblast cell layers. Pretreatment of fibroblasts but not lymphocytes with ICAM-1 MAb, and of lymphocytes but not fibroblasts with lymphocyte function-associated antigen 1 MAb inhibits adhesion. Intercellular adhesion is increased by prior exposure of fibroblasts to IL 1, and correlates with induction of ICAM-1.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                7 September 1998
                : 142
                : 5
                : 1381-1391
                Affiliations
                [* ]Department of Physiology and Pathology, University of Trieste, Trieste, Italy 34127; []Laboratory of Tumor Immunology, San Raffaele Scientific Institute, Milan, Italy 20132; and [§ ]Department of Medicine, University of Washington, Seattle, Washington 98195
                Article
                10.1083/jcb.142.5.1381
                2149355
                9732297
                dc7a31a0-7c6d-4fc1-a5e0-b8bf6017b6d2
                Copyright @ 1998
                History
                : 23 December 1997
                : 27 July 1998
                Categories
                Articles

                Cell biology
                endothelial,adherence,signaling,selectin,vcam-l
                Cell biology
                endothelial, adherence, signaling, selectin, vcam-l

                Comments

                Comment on this article