2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reconstructing Macroevolutionary Patterns in Avian MHC Architecture With Genomic Data

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Major Histocompatibility Complex (MHC) is a hyper-polymorphic genomic region, which forms a part of the vertebrate adaptive immune system and is crucial for intra- and extra-cellular pathogen recognition (MHC-I and MHC-IIA/B, respectively). Although recent advancements in high-throughput sequencing methods sparked research on the MHC in non-model species, the evolutionary history of MHC gene structure is still poorly understood in birds. Here, to explore macroevolutionary patterns in the avian MHC architecture, we retrieved contigs with antigen-presenting MHC and MHC-related genes from available genomes based on third-generation sequencing. We identified: 1) an ancestral avian MHC architecture with compact size and tight linkage between MHC-I, MHC-IIA/IIB and MHC-related genes; 2) three major patterns of MHC-IIA/IIB unit organization in different avian lineages; and 3) lineage-specific gene translocation events (e.g., separation of the antigen-processing TAP genes from the MHC-I region in passerines), and 4) the presence of a single MHC-IIA gene copy in most taxa, showing evidence of strong purifying selection (low dN/dS ratio and low number of positively selected sites). Our study reveals long-term macroevolutionary patterns in the avian MHC architecture and provides the first evidence of important transitions in the genomic arrangement of the MHC region over the last 100 million years of bird evolution.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.

          The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TBtools - an integrative toolkit developed for interactive analyses of big biological data

            The rapid development of high-throughput sequencing techniques has led biology into the big-data era. Data analyses using various bioinformatics tools rely on programming and command-line environments, which are challenging and time-consuming for most wet-lab biologists. Here, we present TBtools (a Toolkit for Biologists integrating various biological data-handling tools), a stand-alone software with a user-friendly interface. The toolkit incorporates over 130 functions, which are designed to meet the increasing demand for big-data analyses, ranging from bulk sequence processing to interactive data visualization. A wide variety of graphs can be prepared in TBtools using a new plotting engine ("JIGplot") developed to maximize their interactive ability; this engine allows quick point-and-click modification of almost every graphic feature. TBtools is platform-independent software that can be run under all operating systems with Java Runtime Environment 1.6 or newer. It is freely available to non-commercial users at https://github.com/CJ-Chen/TBtools/releases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm

              Haplotype-resolved de novo assembly is the ultimate solution to the study of sequence variations in a genome. However, existing algorithms either collapse heterozygous alleles into one consensus copy or fail to cleanly separate the haplotypes to produce high-quality phased assemblies. Here we describe hifiasm, a de novo assembler that takes advantage of long high-fidelity sequence reads to faithfully represent the haplotype information in a phased assembly graph. Unlike other graph-based assemblers that only aim to maintain the contiguity of one haplotype, hifiasm strives to preserve the contiguity of all haplotypes. This feature enables the development of a graph trio binning algorithm that greatly advances over standard trio binning. On three human and five nonhuman datasets, including California redwood with a ~30-Gb hexaploid genome, we show that hifiasm frequently delivers better assemblies than existing tools and consistently outperforms others on haplotype-resolved assembly.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                17 February 2022
                2022
                : 13
                : 823686
                Affiliations
                [1] 1 College of Animal Science and Technology , College of Veterinary Medicine , Zhejiang Agriculture and Forestry University , Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province , Hangzhou, China
                [2] 2 Institute of Qinghai-Tibetan Plateau , Southwest Minzu University , Chengdu, China
                [3] 3 Behavioral and Molecular Ecology Group , Department of Biological Sciences , University of Wisconsin-Milwaukee , Milwaukee, WI, United States
                [4] 4 Department of Biodiversity Studies and Bioeducation , Faculty of Biology and Environmental Protection , University of Łodz , Łódź, Poland
                Author notes

                Edited by: Manuel Alfonso Patarroyo, Colombian Institute of Immunology Foundation, Colombia

                Reviewed by: Baojun Wu, Massey University, New Zealand

                Paul J. Norman, University of Colorado Denver, United States

                Jim Kaufman, University of Cambridge, United Kingdom

                *Correspondence: Ke He, heke@ 123456zafu.edu.cn ; Piotr Minias, pminias@ 123456op.pl

                This article was submitted to Evolutionary and Population Genetics, a section of the journal Frontiers in Genetics

                Article
                823686
                10.3389/fgene.2022.823686
                8893315
                35251132
                df8fa290-08f7-4484-b6a2-f12bfd89a3a9
                Copyright © 2022 He, Liang, Zhu, Dunn, Zhao and Minias.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 November 2021
                : 25 January 2022
                Funding
                Funded by: National Natural Science Foundation of China , doi 10.13039/501100001809;
                Categories
                Genetics
                Original Research

                Genetics
                mhc architecture,mhc gene structure,avian mhc,macroevolutionary,third-generation sequencing genome

                Comments

                Comment on this article