12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Immune imbalance of T lymphocyte subsets is a hallmark of psoriasis, but the molecular mechanisms underlying this aspect of psoriasis pathology are poorly understood. Here, we report that microRNA-210 (miR-210), a miR that is highly expressed in both psoriasis patients and mouse models, induces helper T (Th) 17 and Th1 cell differentiation but inhibits Th2 differentiation through repressing STAT6 and LYN expression, contributing to several aspects of the immune imbalance in psoriasis. Both miR-210 ablation in mice and inhibition of miR-210 by intradermal injection of antagomir-210 blocked the immune imbalance and the development of psoriasis-like inflammation in an imiquimod-induced or IL-23-induced psoriasis-like mouse model. We further showed that TGF-β and IL-23 enhance miR-210 expression by inducing HIF-1α, which recruits P300 and promotes histone H3 acetylation in the miR-210 promoter region. Our results reveal a crucial role for miR-210 in the immune imbalance of T lymphocyte subsets in psoriasis and suggest a potential therapeutic avenue.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells.

          Interleukin 22 (IL-22) is a cytokine produced by the T(H)-17 lineage of helper T cells and NK-22 subset of natural killer cells that acts on epithelial cells and keratinocytes and has been linked to skin homeostasis and inflammation. Here we characterize a population of human skin-homing memory CD4(+) T cells that expressed the chemokine receptors CCR10, CCR6 and CCR4 and produced IL-22 but neither IL-17 nor interferon-gamma (IFN-gamma). Clones isolated from this population produced IL-22 only and had low or undetectable expression of the T(H)-17 and T helper type 1 (T(H)1) transcription factors RORgammat and T-bet. The differentiation of T cells producing only IL-22 was efficiently induced in naive T cells by plasmacytoid dendritic cells in an IL-6- and tumor necrosis factor-dependent way. Our findings delineate a previously unknown subset of human CD4(+) effector T cells dedicated to skin pathophysiology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            H3K27 acetylation activated-long non-coding RNA CCAT1 affects cell proliferation and migration by regulating SPRY4 and HOXB13 expression in esophageal squamous cell carcinoma

            Abstract Recently, long non-coding RNAs (lncRNAs) have been shown to have important regulatory roles in human cancer biology. In our study, we found that lncRNA CCAT1, whose expression is significantly increased and is correlated with outcomes in Esophageal Squamous Cell Carcinoma (ESCC). Consecutive experiments confirmed that H3K27-acetylation could activate expression of colon cancer associated transcript-1 (CCAT1). Further experiments revealed that CCAT1 knockdown significantly repressed the proliferation and migration both in vitro and in vivo. RNA-seq analysis revealed that CCAT1 knockdown preferentially affected genes that are linked to cell proliferation, cell migration and cell adhesion. Mechanistic investigations found that CCAT1 could serve as a scaffold for two distinct epigenetic modification complexes (5΄ domain of CCAT1 binding Polycomb Repressive Complex 2 (PRC2) while 3΄ domain of CCAT1 binding SUV39H1) and modulate the histone methylation of promoter of SPRY4 (sprouty RTK signaling antagonist 4) in nucleus. In cytoplasm, CCAT1 regulates HOXB13 as a molecular decoy for miR-7, a microRNA that targets both CCAT1 and HOXB13, thus facilitating cell growth and migration. Together, our data demonstrated the important roles of CCAT1 in ESCC oncogenesis and might serve as targets for ESCC diagnosis and therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epigenetics of the depressed brain: role of histone acetylation and methylation.

              Major depressive disorder is a chronic, remitting syndrome involving widely distributed circuits in the brain. Stable alterations in gene expression that contribute to structural and functional changes in multiple brain regions are implicated in the heterogeneity and pathogenesis of the illness. Epigenetic events that alter chromatin structure to regulate programs of gene expression have been associated with depression-related behavior, antidepressant action, and resistance to depression or 'resilience' in animal models, with increasing evidence for similar mechanisms occurring in postmortem brains of depressed humans. In this review, we discuss recent advances in our understanding of epigenetic contributions to depression, in particular the role of histone acetylation and methylation, which are revealing novel mechanistic insight into the syndrome that may aid in the development of novel targets for depression treatment.
                Bookmark

                Author and article information

                Journal
                Journal of Clinical Investigation
                American Society for Clinical Investigation
                0021-9738
                1558-8238
                June 1 2018
                June 1 2018
                May 14 2018
                June 1 2018
                : 128
                : 6
                : 2551-2568
                Article
                10.1172/JCI97426
                5983326
                29757188
                e0279d48-c3ef-45f6-af7f-eed17820efa9
                © 2018
                History

                Comments

                Comment on this article