38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spatial potential ripples of azimuthal surface modes in topological insulator Bi 2Te 3 nanowires

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Topological insulators (TI) nanowires (NW) are an emerging class of structures, promising both novel quantum effects and potential applications in low-power electronics, thermoelectrics and spintronics. However, investigating the electronic states of TI NWs is complicated, due to their small lateral size, especially at room temperature. Here, we perform scanning probe based nanoscale imaging to resolve the local surface potential landscapes of Bi 2Te 3 nanowires (NWs) at 300 K. We found equipotential rings around the NWs perimeter that we attribute to azimuthal 1D modes. Along the NW axis, these modes are altered, forming potential ripples in the local density of states, due to intrinsic disturbances. Potential mapping of electrically biased NWs enabled us to accurately determine their conductivity which was found to increase with the decrease of NW diameter, consistent with surface dominated transport. Our results demonstrate that TI NWs can pave the way to both exotic quantum states and novel electronic devices.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Experimental realization of a three-dimensional topological insulator, Bi2Te3.

          Three-dimensional topological insulators are a new state of quantum matter with a bulk gap and odd number of relativistic Dirac fermions on the surface. By investigating the surface state of Bi2Te3 with angle-resolved photoemission spectroscopy, we demonstrate that the surface state consists of a single nondegenerate Dirac cone. Furthermore, with appropriate hole doping, the Fermi level can be tuned to intersect only the surface states, indicating a full energy gap for the bulk states. Our results establish that Bi2Te3 is a simple model system for the three-dimensional topological insulator with a single Dirac cone on the surface. The large bulk gap of Bi2Te3 also points to promising potential for high-temperature spintronics applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The birth of topological insulators.

            Joel Moore (2010)
            Certain insulators have exotic metallic states on their surfaces. These states are formed by topological effects that also render the electrons travelling on such surfaces insensitive to scattering by impurities. Such topological insulators may provide new routes to generating novel phases and particles, possibly finding uses in technological applications in spintronics and quantum computing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Topological Insulators in Three Dimensions

              (2007)
              We study three dimensional generalizations of the quantum spin Hall (QSH) effect. Unlike two dimensions, where the QSH effect is distinguished by a single \(Z_2\) topological invariant, in three dimensions there are 4 invariants distinguishing 16 "topological insulator" phases. There are two general classes: weak (WTI) and strong (STI) topological insulators. The WTI states are equivalent to layered 2D QSH states, but are fragile because disorder continuously connects them to band insulators. The STI states are robust and have surface states that realize the 2+1 dimensional parity anomaly without fermion doubling, giving rise to a novel "topological metal" surface phase. We introduce a tight binding model which realizes both the WTI and STI phases, and we discuss the relevance of this model to real three dimensional materials, including bismuth.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                11 January 2016
                2016
                : 6
                : 19014
                Affiliations
                [1 ]IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC) , Isaac Newton 8, PTM, E- 28760, Tres Cantos, Madrid, Spain
                [2 ]Materials Sciences Division, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, CA 94720, United States
                [3 ]Applied Science and Technology Graduate Program, University of California at Berkeley , Berkeley, CA 94720, USA
                [4 ]Institute of Nanostructure and Solid State Physics, Universität Hamburg , Jungiusstrasse 11, 20355 Hamburg, Germany
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep19014
                10.1038/srep19014
                4707462
                26751282
                eaa158b6-00f2-4207-9468-da9524772adf
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 25 August 2015
                : 23 November 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article