18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      NPAS2 Compensates for Loss of CLOCK in Peripheral Circadian Oscillators

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heterodimers of CLOCK and BMAL1 are the major transcriptional activators of the mammalian circadian clock. Because the paralog NPAS2 can substitute for CLOCK in the suprachiasmatic nucleus (SCN), the master circadian pacemaker, CLOCK-deficient mice maintain circadian rhythms in behavior and in tissues in vivo. However, when isolated from the SCN, CLOCK-deficient peripheral tissues are reportedly arrhythmic, suggesting a fundamental difference in circadian clock function between SCN and peripheral tissues. Surprisingly, however, using luminometry and single-cell bioluminescence imaging of PER2 expression, we now find that CLOCK-deficient dispersed SCN neurons and peripheral cells exhibit similarly stable, autonomous circadian rhythms in vitro. In CLOCK-deficient fibroblasts, knockdown of Npas2 leads to arrhythmicity, suggesting that NPAS2 can compensate for loss of CLOCK in peripheral cells as well as in SCN. Our data overturn the notion of an SCN-specific role for NPAS2 in the molecular circadian clock, and instead indicate that, at the cellular level, the core loops of SCN neuron and peripheral cell circadian clocks are fundamentally similar.

          Author Summary

          In mammals, circadian clocks are based on a core transcriptional–translational feedback loop. BMAL1 and CLOCK activate the transcription of Per1-3 and Cry1/2. PER and CRY proteins inhibit BMAL1/CLOCK, and thus their own transcription. In Clock -/- mice, NPAS2 can substitute for CLOCK in the suprachiasmatic nucleus (SCN), the major circadian pacemaker. However, peripheral tissues of Clock -/- mice were reported to lack circadian rhythms. Since then, the protein CLOCK has been deemed essential for circadian rhythms in peripheral tissues. However, here we show that Clock -/- peripheral cells and tissues exhibit stable, autonomous circadian rhythms. Furthermore, in Clock -/- fibroblasts, knockdown of Npas2 leads to arrhythmicity, suggesting that NPAS2 can compensate for the loss of CLOCK in peripheral cells as well as in SCN. Our data overturn the notion of an SCN-specific role for NPAS2, and instead indicate that the core loops of SCN neuron and peripheral cell circadian clocks are fundamentally similar. This finding redefines a basic principle of molecular circadian clock regulation in peripheral organs which are essential for many metabolic processes. Disturbances of these rhythms lead to disorders like diabetes, obesity, and cancer. Thus, understanding the molecular basis of peripheral circadian oscillators is essential to develop treatments against clock-related disorders.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Transcriptional architecture and chromatin landscape of the core circadian clock in mammals.

          The mammalian circadian clock involves a transcriptional feed back loop in which CLOCK and BMAL1 activate the Period and Cryptochrome genes, which then feedback and repress their own transcription. We have interrogated the transcriptional architecture of the circadian transcriptional regulatory loop on a genome scale in mouse liver and find a stereotyped, time-dependent pattern of transcription factor binding, RNA polymerase II (RNAPII) recruitment, RNA expression, and chromatin states. We find that the circadian transcriptional cycle of the clock consists of three distinct phases: a poised state, a coordinated de novo transcriptional activation state, and a repressed state. Only 22% of messenger RNA (mRNA) cycling genes are driven by de novo transcription, suggesting that both transcriptional and posttranscriptional mechanisms underlie the mammalian circadian clock. We also find that circadian modulation of RNAPII recruitment and chromatin remodeling occurs on a genome-wide scale far greater than that seen previously by gene expression profiling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Disruption of the Clock Components CLOCK and BMAL1 Leads to Hypoinsulinemia and Diabetes

            The molecular clock maintains energy constancy by producing circadian oscillations of rate-limiting enzymes involved in tissue metabolism across the day and night1–3. During periods of feeding, pancreatic islets secrete insulin to maintain glucose homeostasis, and while rhythmic control of insulin release is recognized to be dysregulated in humans with diabetes4, it is not known how the circadian clock may affect this process. Here we show that pancreatic islets possess self-sustained circadian gene and protein oscillations of the transcription factors CLOCK and BMAL1. The phase of oscillation of islet genes involved in growth, glucose metabolism, and insulin signaling is delayed in circadian mutant mice, and both Clock 5,6 and Bmal1 7 mutants exhibit impaired glucose tolerance, reduced insulin secretion, and defects in size and proliferation of pancreatic islets that worsen with age. Clock disruption leads to transcriptome-wide alterations in the expression of islet genes involved in growth, survival, and synaptic vesicle assembly. Remarkably, conditional ablation of the pancreatic clock causes diabetes mellitus due to defective β-cell function at the very latest stage of stimulus-secretion coupling. These results demonstrate a role for the β-cell clock in coordinating insulin secretion with the sleep-wake cycle, and reveal that ablation of the pancreatic clock can trigger onset of diabetes mellitus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Suprachiasmatic nucleus: cell autonomy and network properties.

              The suprachiasmatic nucleus (SCN) is the primary circadian pacemaker in mammals. Individual SCN neurons in dispersed culture can generate independent circadian oscillations of clock gene expression and neuronal firing. However, SCN rhythmicity depends on sufficient membrane depolarization and levels of intracellular calcium and cAMP. In the intact SCN, cellular oscillations are synchronized and reinforced by rhythmic synaptic input from other cells, resulting in a reproducible topographic pattern of distinct phases and amplitudes specified by SCN circuit organization. The SCN network synchronizes its component cellular oscillators, reinforces their oscillations, responds to light input by altering their phase distribution, increases their robustness to genetic perturbations, and enhances their precision. Thus, even though individual SCN neurons can be cell-autonomous circadian oscillators, neuronal network properties are integral to normal function of the SCN.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, CA USA )
                1553-7390
                1553-7404
                19 February 2016
                February 2016
                : 12
                : 2
                : e1005882
                Affiliations
                [1 ]Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
                [2 ]Department of Psychiatry & Center for Circadian Biology, University of California, San Diego, La Jolla, California, United States of America
                Charité - Universitätsmedizin Berlin, GERMANY
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DL DKW. Performed the experiments: DL DKW LLW TD. Analyzed the data: DL. Wrote the paper: DL DKW.

                Article
                PGENETICS-D-15-02261
                10.1371/journal.pgen.1005882
                4760943
                26895328
                eee3f39b-5f0a-41e0-a2ec-e59e62fd1411

                This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 9 September 2015
                : 28 January 2016
                Page count
                Figures: 5, Tables: 0, Pages: 16
                Funding
                This study was supported by a Veterans Affairs Merit Award (1I01BX001146) and a NARSAD Young Investigator Award to David K. Welsh. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Chronobiology
                Circadian Rhythms
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Connective Tissue Cells
                Fibroblasts
                Biology and Life Sciences
                Anatomy
                Biological Tissue
                Connective Tissue
                Connective Tissue Cells
                Fibroblasts
                Medicine and Health Sciences
                Anatomy
                Biological Tissue
                Connective Tissue
                Connective Tissue Cells
                Fibroblasts
                Biology and Life Sciences
                Biochemistry
                Circadian Oscillators
                Biology and Life Sciences
                Chronobiology
                Circadian Oscillators
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Neurons
                Physical Sciences
                Physics
                Electromagnetic Radiation
                Luminescence
                Bioluminescence
                Biology and Life Sciences
                Organisms
                Animals
                Vertebrates
                Mammals
                Rodents
                Mice
                Biology and Life Sciences
                Anatomy
                Renal System
                Kidneys
                Medicine and Health Sciences
                Anatomy
                Renal System
                Kidneys
                Biology and Life Sciences
                Genetics
                Genetic Oscillators
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Genetics
                Genetics

                Comments

                Comment on this article