22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Expression of TLR4 in Non-Small Cell Lung Cancer Is Associated with PD-L1 and Poor Prognosis in Patients Receiving Pulmonectomy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Currently, the effect of inflammation on tumorigenesis and progression has been widely noted. As a member of pattern recognition receptors, toll-like receptor 4 (TLR4) plays a pivotal role in tumor immune microenvironment and has been increasingly investigated. In the present study, we evaluated TLR4 expression and its association with programmed cell death ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC) tissues and assessed the predicting value of TLR4 on postoperative outcome. A total of 126 NSCLC patients receiving complete pulmonary resection and systematic lymph node dissection between April 2008 and August 2014 were enrolled. All the patients had integrated clinicopathological records and follow-up data. TLR4 and PD-L1 expression on NSCLC samples were determined by immunohistochemistry, and serum soluble TLR4 (sTLR4) levels were measured by enzyme-linked immunosorbent assay. Results showed that TLR4 expression level in cancer tissue was significantly higher than that in para-cancer tissue. Elevated TLR4 expression was significantly associated with histological type (adenocarcinoma higher than squamous cell carcinoma, P = 0.041), increased clinical TNM stage ( P < 0.001), and presence of lymphatic invasion ( P < 0.001). Besides, TLR4 expression level in cancer samples was inversely correlated with serum sTLR4 level in patients with early-stage NSCLC ( r = −0.485, P = 0.003). TLR4 expression level was also positively correlated with the PD-L1 expression level ( r = 0.545, P < 0.0001). Multivariate analysis showed that expression level of TLR4 was an independent prognostic factor and TLR4 overexpression indicated a poor overall survival and disease-free survival. Taken together, we conclude that expression of TLR4 in lung cancer is associated with PD-L1 and could predict the outcome of patients with NSCLC receiving pulmonary resection for cancer.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          The blockade of immune checkpoints in cancer immunotherapy.

          Among the most promising approaches to activating therapeutic antitumour immunity is the blockade of immune checkpoints. Immune checkpoints refer to a plethora of inhibitory pathways hardwired into the immune system that are crucial for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage. It is now clear that tumours co-opt certain immune-checkpoint pathways as a major mechanism of immune resistance, particularly against T cells that are specific for tumour antigens. Because many of the immune checkpoints are initiated by ligand-receptor interactions, they can be readily blocked by antibodies or modulated by recombinant forms of ligands or receptors. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) antibodies were the first of this class of immunotherapeutics to achieve US Food and Drug Administration (FDA) approval. Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade.

            PD-1 is a receptor of the Ig superfamily that negatively regulates T cell antigen receptor signaling by interacting with the specific ligands (PD-L) and is suggested to play a role in the maintenance of self-tolerance. In the present study, we examined possible roles of the PD-1/PD-L system in tumor immunity. Transgenic expression of PD-L1, one of the PD-L, in P815 tumor cells rendered them less susceptible to the specific T cell antigen receptor-mediated lysis by cytotoxic T cells in vitro, and markedly enhanced their tumorigenesis and invasiveness in vivo in the syngeneic hosts as compared with the parental tumor cells that lacked endogenous PD-L. Both effects could be reversed by anti-PD-L1 Ab. Survey of murine tumor lines revealed that all of the myeloma cell lines examined naturally expressed PD-L1. Growth of the myeloma cells in normal syngeneic mice was inhibited significantly albeit transiently by the administration of anti-PD-L1 Ab in vivo and was suppressed completely in the syngeneic PD-1-deficient mice. These results suggest that the expression of PD-L1 can serve as a potent mechanism for potentially immunogenic tumors to escape from host immune responses and that blockade of interaction between PD-1 and PD-L may provide a promising strategy for specific tumor immunotherapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Persistent DNA damage signaling triggers senescence-associated inflammatory cytokine secretion

              Cellular senescence suppresses cancer by stably arresting the proliferation of damaged cells1. Paradoxically, senescent cells also secrete factors that alter tissue microenvironments2. The pathways regulating this secretion are unknown. We show that damaged human cells develop persistent chromatin lesions bearing hallmarks of DNA double-strand breaks (DSBs), which initiate increased secretion of inflammatory cytokines such as interleukin-6 (IL-6). Cytokine secretion occurred only after establishment of persistent DNA damage signaling, usually associated with senescence, not after transient DNA damage responses (DDR). Initiation and maintenance of this cytokine response required the DDR proteins ATM, NBS1 and CHK2, but not the cell cycle arrest enforcers p53 and pRb. ATM was also essential for IL-6 secretion during oncogene-induced senescence and by damaged cells that bypass senescence. Further, DDR activity and IL-6 were elevated in human cancers, and ATM-depletion suppressed the ability of senescent cells to stimulate IL-6-dependent cancer cell invasiveness. Thus, in addition to orchestrating cell cycle checkpoints and DNA repair, a novel and important role of the DDR is to allow damaged cells to communicate their compromised state to the surrounding tissue.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                21 April 2017
                2017
                : 8
                : 456
                Affiliations
                [1] 1Department of Immunology, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
                [2] 2Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
                [3] 3National Clinical Research Center for Cancer , Tianjin, China
                [4] 4Tianjin Key Laboratory of Cancer Immunology and Biotherapy , Tianjin, China
                [5] 5Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
                Author notes

                Edited by: Sherven Sharma, VA Greater Los Angeles Healthcare System (VHA), USA

                Reviewed by: Daniel Olive, Institut national de la santé et de la recherche médicale (INSERM), France; Alexandre Corthay, Oslo University Hospital, Norway

                *Correspondence: Xiubao Ren, renxiubao@ 123456tjmuch.com

                These authors have contributed equally to this work.

                Specialty section: This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2017.00456
                5399072
                28484456
                efcde22a-5f5f-471d-ab0f-43090e933e8a
                Copyright © 2017 Wang, Wang, Wei, Zhao, Yang and Ren.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 February 2017
                : 04 April 2017
                Page count
                Figures: 4, Tables: 3, Equations: 0, References: 54, Pages: 11, Words: 7202
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 81672697
                Categories
                Immunology
                Original Research

                Immunology
                toll-like receptor 4,non-small cell lung cancer,programmed cell death ligand 1,soluble toll-like receptor 4,tumor microenvironment

                Comments

                Comment on this article