9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NEAT1 regulates microtubule stabilization via FZD3/GSK3β/P-tau pathway in SH-SY5Y cells and APP/PS1 mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nuclear paraspeckles assembly transcript 1 (NEAT1) is a well-known long noncoding RNA (lncRNA) with various functions in different physiological and pathological processes. Notably, aberrant NEAT1 expression is implicated in the pathogenesis of various neurodegenerative diseases, including Alzheimer’s disease (AD). However, the molecular mechanism of NEAT1 in AD remains poorly understood. In this study, we investigated that NEAT1 regulated microtubules (MTs) polymerization via FZD3/GSK3β/p-tau pathway. Downregulation of NEAT1 inhibited Frizzled Class Receptor 3 (FZD3) transcription activity by suppressing H3K27 acetylation (H3K27Ac) at the FZD3 promoter. Our data also demonstrated that P300, an important histone acetyltransferases (HAT), recruited by NEAT1 to bind to FZD3 promoter and mediated its transcription via regulating histone acetylation. In addition, according to immunofluorescence staining of MTs, metformin, a medicine for the treatment of diabetes mellitus, rescued the reduced length of neurites detected in NEAT1 silencing cells. We suspected that metformin may play a neuroprotective role in early AD by increasing NEAT1 expression and through FZD3/GSK3β/p-tau pathway. Collectively, NEAT1 regulates microtubule stabilization via FZD3/GSK3β/P-tau pathway and influences FZD3 transcription activity in the epigenetic way.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Long noncoding RNA as modular scaffold of histone modification complexes.

          Long intergenic noncoding RNAs (lincRNAs) regulate chromatin states and epigenetic inheritance. Here, we show that the lincRNA HOTAIR serves as a scaffold for at least two distinct histone modification complexes. A 5' domain of HOTAIR binds polycomb repressive complex 2 (PRC2), whereas a 3' domain of HOTAIR binds the LSD1/CoREST/REST complex. The ability to tether two distinct complexes enables RNA-mediated assembly of PRC2 and LSD1 and coordinates targeting of PRC2 and LSD1 to chromatin for coupled histone H3 lysine 27 methylation and lysine 4 demethylation. Our results suggest that lincRNAs may serve as scaffolds by providing binding surfaces to assemble select histone modification enzymes, thereby specifying the pattern of histone modifications on target genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The amyloid hypothesis of Alzheimer's disease at 25 years

            Abstract Despite continuing debate about the amyloid β‐protein (or Aβ hypothesis, new lines of evidence from laboratories and clinics worldwide support the concept that an imbalance between production and clearance of Aβ42 and related Aβ peptides is a very early, often initiating factor in Alzheimer's disease (AD). Confirmation that presenilin is the catalytic site of γ‐secretase has provided a linchpin: all dominant mutations causing early‐onset AD occur either in the substrate (amyloid precursor protein, APP) or the protease (presenilin) of the reaction that generates Aβ. Duplication of the wild‐type APP gene in Down's syndrome leads to Aβ deposits in the teens, followed by microgliosis, astrocytosis, and neurofibrillary tangles typical of AD. Apolipoprotein E4, which predisposes to AD in > 40% of cases, has been found to impair Aβ clearance from the brain. Soluble oligomers of Aβ42 isolated from AD patients' brains can decrease synapse number, inhibit long‐term potentiation, and enhance long‐term synaptic depression in rodent hippocampus, and injecting them into healthy rats impairs memory. The human oligomers also induce hyperphosphorylation of tau at AD‐relevant epitopes and cause neuritic dystrophy in cultured neurons. Crossing human APP with human tau transgenic mice enhances tau‐positive neurotoxicity. In humans, new studies show that low cerebrospinal fluid (CSF) Aβ42 and amyloid‐PET positivity precede other AD manifestations by many years. Most importantly, recent trials of three different Aβ antibodies (solanezumab, crenezumab, and aducanumab) have suggested a slowing of cognitive decline in post hoc analyses of mild AD subjects. Although many factors contribute to AD pathogenesis, Aβ dyshomeostasis has emerged as the most extensively validated and compelling therapeutic target.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Alzheimer's disease.

              Although the prevalence of dementia continues to increase worldwide, incidence in the western world might have decreased as a result of better vascular care and improved brain health. Alzheimer's disease, the most prevalent cause of dementia, is still defined by the combined presence of amyloid and tau, but researchers are gradually moving away from the simple assumption of linear causality as proposed in the original amyloid hypothesis. Age-related, protective, and disease-promoting factors probably interact with the core mechanisms of the disease. Amyloid β42, and tau proteins are established core cerebrospinal biomarkers; novel candidate biomarkers include amyloid β oligomers and synaptic markers. MRI and fluorodeoxyglucose PET are established imaging techniques for diagnosis of Alzheimer's disease. Amyloid PET is gaining traction in the clinical arena, but validity and cost-effectiveness remain to be established. Tau PET might offer new insights and be of great help in differential diagnosis and selection of patients for trials. In the search for understanding the disease mechanism and keys to treatment, research is moving increasingly into the earliest phase of disease. Preclinical Alzheimer's disease is defined as biomarker evidence of Alzheimer's pathological changes in cognitively healthy individuals. Patients with subjective cognitive decline have been identified as a useful population in whom to look for preclinical Alzheimer's disease. Moderately positive results for interventions targeting several lifestyle factors in non-demented elderly patients and moderately positive interim results for lowering amyloid in pre-dementia Alzheimer's disease suggest that, ultimately, there will be a future in which specific anti-Alzheimer's therapy will be combined with lifestyle interventions targeting general brain health to jointly combat the disease. In this Seminar, we discuss the main developments in Alzheimer's research.
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                Aging
                Aging (Albany NY)
                Impact Journals
                1945-4589
                30 November 2020
                18 November 2020
                : 12
                : 22
                : 23233-23250
                Affiliations
                [1 ]State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P.R. China
                [2 ]School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
                [3 ]Key Lab in Healthy Science and Technology of Shenzhen, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P.R. China
                [4 ]Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, P.R. China
                [5 ]Open FIESTA Center, Tsinghua University, Shenzhen 518055, P.R. China
                [6 ]State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong 510070, P.R. China
                Author notes
                [*]

                Co-first authors

                Correspondence to: Yaou Zhang; email: zhangyo@sz.tsinghua.edu.cn
                Correspondence to: Weidong Xie; email: xiewd@sz.tsinghua.edu.cn
                Article
                104098 104098
                10.18632/aging.104098
                7746375
                33221742
                f5263bd4-638b-41b5-baf0-712b8553e5be
                Copyright: © 2020 Zhao et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 17 February 2020
                : 04 August 2020
                Categories
                Research Paper

                Cell biology
                alzheimer’s disease,neat1,fzd3,h3k27ac,metformin
                Cell biology
                alzheimer’s disease, neat1, fzd3, h3k27ac, metformin

                Comments

                Comment on this article