169
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Wolbachia Variants Induce Differential Protection to Viruses in Drosophila melanogaster: A Phenotypic and Phylogenomic Analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wolbachia are intracellular bacterial symbionts that are able to protect various insect hosts from viral infections. This tripartite interaction was initially described in Drosophila melanogaster carrying wMel, its natural Wolbachia strain. wMel has been shown to be genetically polymorphic and there has been a recent change in variant frequencies in natural populations. We have compared the antiviral protection conferred by different wMel variants, their titres and influence on host longevity, in a genetically identical D. melanogaster host. The phenotypes cluster the variants into two groups — wMelCS-like and wMel-like. wMelCS-like variants give stronger protection against Drosophila C virus and Flock House virus, reach higher titres and often shorten the host lifespan. We have sequenced and assembled the genomes of these Wolbachia, and shown that the two phenotypic groups are two monophyletic groups. We have also analysed a virulent and over-replicating variant, wMelPop, which protects D. melanogaster even better than the closely related wMelCS. We have found that a ∼21 kb region of the genome, encoding eight genes, is amplified seven times in wMelPop and may be the cause of its phenotypes. Our results indicate that the more protective wMelCS-like variants, which sometimes have a cost, were replaced by the less protective but more benign wMel-like variants. This has resulted in a recent reduction in virus resistance in D. melanogaster in natural populations worldwide. Our work helps to understand the natural variation in wMel and its evolutionary dynamics, and inform the use of Wolbachia in arthropod-borne disease control.

          Author Summary

          Wolbachia are bacterial symbionts that infect many arthropods and can protect insects from viral infection. Here we show that different variants of Wolbachia from Drosophila melanogaster (wMel) are phenotypically heterogeneous: they differ in the level of protection they confer and the titres they reach in their host. The Wolbachia with higher titres have higher antiviral protection but can also exert a cost on their host. Based on the observed phenotypes, we divided the wMel variants into two groups and demonstrated that the division is reflected in their phylogeny. Moreover, we discovered the genetic difference between two otherwise almost identical wMel variants, wMelPop and wMelCS, that may explain why one is highly pathogenic while the other produces benign infections. Our study helps to explain the prevalence of the different wMel variants in wild Drosophila populations and sheds light on the factors shaping it. In particular, the recent replacement of some wMel variants caused a decrease in anti-viral resistance and probably reduced the cost of the symbiont for the host. Finally, our work helps to understand the interaction of wMel with its natural host and inform Wolbachia use in the control of diseases transmitted by insects.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Wolbachia: master manipulators of invertebrate biology.

          Wolbachia are common intracellular bacteria that are found in arthropods and nematodes. These alphaproteobacteria endosymbionts are transmitted vertically through host eggs and alter host biology in diverse ways, including the induction of reproductive manipulations, such as feminization, parthenogenesis, male killing and sperm-egg incompatibility. They can also move horizontally across species boundaries, resulting in a widespread and global distribution in diverse invertebrate hosts. Here, we review the basic biology of Wolbachia, with emphasis on recent advances in our understanding of these fascinating endosymbionts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dating of the human-ape splitting by a molecular clock of mitochondrial DNA.

            A new statistical method for estimating divergence dates of species from DNA sequence data by a molecular clock approach is developed. This method takes into account effectively the information contained in a set of DNA sequence data. The molecular clock of mitochondrial DNA (mtDNA) was calibrated by setting the date of divergence between primates and ungulates at the Cretaceous-Tertiary boundary (65 million years ago), when the extinction of dinosaurs occurred. A generalized least-squares method was applied in fitting a model to mtDNA sequence data, and the clock gave dates of 92.3 +/- 11.7, 13.3 +/- 1.5, 10.9 +/- 1.2, 3.7 +/- 0.6, and 2.7 +/- 0.6 million years ago (where the second of each pair of numbers is the standard deviation) for the separation of mouse, gibbon, orangutan, gorilla, and chimpanzee, respectively, from the line leading to humans. Although there is some uncertainty in the clock, this dating may pose a problem for the widely believed hypothesis that the pipedal creature Australopithecus afarensis, which lived some 3.7 million years ago at Laetoli in Tanzania and at Hadar in Ethiopia, was ancestral to man and evolved after the human-ape splitting. Another likelier possibility is that mtDNA was transferred through hybridization between a proto-human and a proto-chimpanzee after the former had developed bipedalism.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Facultative bacterial symbionts in aphids confer resistance to parasitic wasps.

              Symbiotic relationships between animals and microorganisms are common in nature, yet the factors controlling the abundance and distributions of symbionts are mostly unknown. Aphids have an obligate association with the bacterium Buchnera aphidicola (the primary symbiont) that has been shown to contribute directly to aphid fitness. In addition, aphids sometimes harbor other vertically transmitted bacteria (secondary symbionts), for which few benefits of infection have been previously documented. We carried out experiments to determine the consequences of these facultative symbioses in Acyrthosiphon pisum (the pea aphid) for vulnerability of the aphid host to a hymenopteran parasitoid, Aphidius ervi, a major natural enemy in field populations. Our results show that, in a controlled genetic background, infection confers resistance to parasitoid attack by causing high mortality of developing parasitoid larvae. Compared with uninfected controls, experimentally infected aphids were as likely to be attacked by ovipositing parasitoids but less likely to support parasitoid development. This strong interaction between a symbiotic bacterium and a host natural enemy provides a mechanism for the persistence and spread of symbiotic bacteria.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                December 2013
                December 2013
                12 December 2013
                : 9
                : 12
                : e1003896
                Affiliations
                [1 ]Instituto Gulbenkian de Ciência, Oeiras, Portugal
                [2 ]Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
                [3 ]Department of Genetics, University of Cambridge, Cambridge, United Kingdom
                Fred Hutchinson Cancer Research Center, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: EC MSPM FMJ LT. Performed the experiments: EC MSPM SSE JM. Analyzed the data: EC LAW FMJ LT. Wrote the paper: EC FMJ LT.

                Article
                PGENETICS-D-13-01384
                10.1371/journal.pgen.1003896
                3861217
                24348259
                f66c1797-4d3c-42e5-9feb-9f16a92659f7
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 24 May 2013
                : 6 September 2013
                Page count
                Pages: 22
                Funding
                This work was supported by Fundação para a Ciência e Tecnologia ( http://www.fct.pt) grants PTDC/BIA-MIC/108327/2008 and PTDC/SAU-MII/105655/2008 and the Wellcome Trust ( http://www.wellcome.ac.uk) grant 094664/Z/10/Z. EC is supported by the PhD fellowship from Fundação para a Ciência e Tecnologia SFRH/BD/51625/2011. FMJ is supported by a Royal Society University Research Fellowship ( http://royalsociety.org). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article