34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hsp90 is important for fecundity, longevity, and buffering of cryptic deleterious variation in wild fly populations

      research-article
      1 , 2 , 3 , 2 , 3 , 4 ,
      BMC Evolutionary Biology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In the laboratory, the Drosophila melanogaster heat shock protein Hsp90 can buffer the phenotypic effects of genetic variation. Laboratory experiments either manipulate Hsp90 activity pharmacologically, or they induce mutations with strong effects in the gene Hsp83, the single-copy fly gene encoding Hsp90. It is unknown whether observations from such laboratory experiments are relevant in the wild.

          Results

          We here study naturally occurring mutations in Hsp83, and their effects on fitness and phenotypic buffering in flies derived from wild populations. We examined more than 4500 flies from 42 Drosophila populations distributed world-wide for insertions or deletions of mobile DNA in or near the Hsp83 gene. The insertions we observed occur at low population frequencies, and reduce Hsp83 gene expression. In competition experiments, mutant flies performed much more poorly than wild-type flies. Mutant flies were also significantly less fecund and shorter-lived than wild-type flies, as well as less well buffered against cryptic deleterious variation, as we show through inbreeding experiments. Specifically, in Hsp83 mutant flies female fecundity dropped to much lower levels after inbreeding than in wild-type flies. At even slightly elevated temperatures, inbred mutant Hsp83 populations went extinct, whereas inbred wild-type populations persisted.

          Conclusions

          Our work shows that Hsp90, a regulator of the stress response and of signaling, helps buffer deleterious variation in fruit flies derived from wild population, and that its buffering role becomes even more important under heat stress.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          The genetics of inbreeding depression.

          Inbreeding depression - the reduced survival and fertility of offspring of related individuals - occurs in wild animal and plant populations as well as in humans, indicating that genetic variation in fitness traits exists in natural populations. Inbreeding depression is important in the evolution of outcrossing mating systems and, because intercrossing inbred strains improves yield (heterosis), which is important in crop breeding, the genetic basis of these effects has been debated since the early twentieth century. Classical genetic studies and modern molecular evolutionary approaches now suggest that inbreeding depression and heterosis are predominantly caused by the presence of recessive deleterious mutations in populations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular chaperones in cellular protein folding.

            F U Hartl (1996)
            The folding of many newly synthesized proteins in the cell depends on a set of conserved proteins known as molecular chaperones. These prevent the formation of misfolded protein structures, both under normal conditions and when cells are exposed to stresses such as high temperature. Significant progress has been made in the understanding of the ATP-dependent mechanisms used by the Hsp70 and chaperonin families of molecular chaperones, which can cooperate to assist in folding new polypeptide chains.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hsp90 as a capacitor of phenotypic variation.

              Heat-shock protein 90 (Hsp90) chaperones the maturation of many regulatory proteins and, in the fruitfly Drosophila melanogaster, buffers genetic variation in morphogenetic pathways. Levels and patterns of genetic variation differ greatly between obligatorily outbreeding species such as fruitflies and self-fertilizing species such as the plant Arabidopsis thaliana. Also, plant development is more plastic, being coupled to environmental cues. Here we report that, in Arabidopsis accessions and recombinant inbred lines, reducing Hsp90 function produces an array of morphological phenotypes, which are dependent on underlying genetic variation. The strength and breadth of Hsp90's effects on the buffering and release of genetic variation suggests it may have an impact on evolutionary processes. We also show that Hsp90 influences morphogenetic responses to environmental cues and buffers normal development from destabilizing effects of stochastic processes. Manipulating Hsp90's buffering capacity offers a tool for harnessing cryptic genetic variation and for elucidating the interplay between genotypes, environments and stochastic events in the determination of phenotype.
                Bookmark

                Author and article information

                Journal
                BMC Evol Biol
                BMC Evolutionary Biology
                BioMed Central
                1471-2148
                2012
                27 February 2012
                : 12
                : 25
                Affiliations
                [1 ]Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
                [2 ]Institute of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
                [3 ]The Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015 Lausanne, Switzerland
                [4 ]The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
                Article
                1471-2148-12-25
                10.1186/1471-2148-12-25
                3305614
                22369091
                f8f17035-0a8f-4b4a-8de6-e418bf7918d7
                Copyright ©2012 Chen and Wagner; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 September 2011
                : 27 February 2012
                Categories
                Research Article

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article