27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The DNA repair protein SHPRH is a nucleosome-stimulated ATPase and a nucleosome-E3 ubiquitin ligase

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Maintenance of genome integrity during DNA replication is crucial to the perpetuation of all organisms. In eukaryotes, the bypass of DNA lesions by the replication machinery prevents prolonged stalling of the replication fork, which could otherwise lead to greater damages such as gross chromosomal rearrangements. Bypassing DNA lesions and subsequent repair are accomplished by the activation of DNA damage tolerance pathways such as the template switching (TS) pathway. In yeast, the RAD5 (Radiation-sensitive 5) protein plays a crucial role in initiating the TS pathway by catalyzing the polyubiquitination of PCNA (Proliferation Cell Nuclear Antigen). Likewise, one of the mammalian RAD5-homologs, SHPRH (SNF2, histone linker, PHD, RING, helicase) mediates PCNA polyubiquitination. To date, the study of SHPRH enzymatic functions has been limited to this modification. It is therefore unclear how SHPRH carries out its function in DNA repair. Moreover, how this protein regulates gene transcription at the enzymatic level is also unknown.

          Results

          Given that SHPRH harbors domains found in chromatin remodeling proteins, we investigated its biochemical properties in the presence of nucleosomal substrates. We find that SHPRH binds equally well to double-stranded (ds) DNA and to nucleosome core particles, however, like ISWI and CHD-family remodelers, SHPRH shows a strong preference for nucleosomes presenting extranucleosomal DNA. Moreover, nucleosomes but not dsDNA strongly stimulate the ATPase activity of SHPRH. Intriguingly, unlike typically observed with SNF2-family enzymes, ATPase activity does not translate into conventional nucleosome remodeling, under standard assay conditions. To test whether SHPRH can act as a ubiquitin E3 ligase for nucleosomes, we performed a screen using 26 E2-conjugating enzymes. We uncover that SHPRH is a potent nucleosome E3-ubiquitin-ligase that can function with at least 7 different E2s. Mass spectrometry analyses of products generated in the presence of the UBE2D1-conjugating enzyme reveal that SHPRH can catalyze the formation of polyubiquitin linkages that are either branched or associated with the recruitment of DNA repair factors, as well as linkages involved in proteasomal degradation.

          Conclusions

          We propose that, in addition to polyubiquitinating PCNA, SHPRH promotes DNA repair or transcriptional regulation in part through chromatin ubiquitination. Our study sets a biochemical framework for studying other RAD5- and RAD16-related protein functions through the ubiquitination of nucleosomes.

          Electronic supplementary material

          The online version of this article (10.1186/s13072-019-0294-5) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Wnt signaling in cancer

          Wnt signaling is one of the key cascades regulating development and stemness, and has also been tightly associated with cancer. The role of Wnt signaling in carcinogenesis has most prominently been described for colorectal cancer, but aberrant Wnt signaling is observed in many more cancer entities. Here, we review current insights into novel components of Wnt pathways and describe their impact on cancer development. Furthermore, we highlight expanding functions of Wnt signaling for both solid and liquid tumors. We also describe current findings how Wnt signaling affects maintenance of cancer stem cells, metastasis and immune control. Finally, we provide an overview of current strategies to antagonize Wnt signaling in cancer and challenges that are associated with such approaches.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The biology of chromatin remodeling complexes.

            The packaging of chromosomal DNA by nucleosomes condenses and organizes the genome, but occludes many regulatory DNA elements. However, this constraint also allows nucleosomes and other chromatin components to actively participate in the regulation of transcription, chromosome segregation, DNA replication, and DNA repair. To enable dynamic access to packaged DNA and to tailor nucleosome composition in chromosomal regions, cells have evolved a set of specialized chromatin remodeling complexes (remodelers). Remodelers use the energy of ATP hydrolysis to move, destabilize, eject, or restructure nucleosomes. Here, we address many aspects of remodeler biology: their targeting, mechanism, regulation, shared and unique properties, and specialization for particular biological processes. We also address roles for remodelers in development, cancer, and human syndromes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO.

              The RAD6 pathway is central to post-replicative DNA repair in eukaryotic cells; however, the machinery and its regulation remain poorly understood. Two principal elements of this pathway are the ubiquitin-conjugating enzymes RAD6 and the MMS2-UBC13 heterodimer, which are recruited to chromatin by the RING-finger proteins RAD18 and RAD5, respectively. Here we show that UBC9, a small ubiquitin-related modifier (SUMO)-conjugating enzyme, is also affiliated with this pathway and that proliferating cell nuclear antigen (PCNA) -- a DNA-polymerase sliding clamp involved in DNA synthesis and repair -- is a substrate. PCNA is mono-ubiquitinated through RAD6 and RAD18, modified by lysine-63-linked multi-ubiquitination--which additionally requires MMS2, UBC13 and RAD5--and is conjugated to SUMO by UBC9. All three modifications affect the same lysine residue of PCNA, suggesting that they label PCNA for alternative functions. We demonstrate that these modifications differentially affect resistance to DNA damage, and that damage-induced PCNA ubiquitination is elementary for DNA repair and occurs at the same conserved residue in yeast and humans.
                Bookmark

                Author and article information

                Contributors
                bouazoune@imt.uni-marburg.de
                Journal
                Epigenetics Chromatin
                Epigenetics Chromatin
                Epigenetics & Chromatin
                BioMed Central (London )
                1756-8935
                21 August 2019
                21 August 2019
                2019
                : 12
                : 52
                Affiliations
                [1 ]ISNI 0000 0004 1936 9756, GRID grid.10253.35, Institut für Molekularbiologie und Tumorforschung (IMT), Biomedizinisches Forschungszentrum, , Philipps-Universität Marburg, ; Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
                [2 ]ISNI 0000 0004 1936 9756, GRID grid.10253.35, Fachbereich Chemie und Synmikro, Gerätezentrum Massenspektrometrie und Elementanalaytik, , Philipps-Universität Marburg, ; Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
                Author information
                http://orcid.org/0000-0002-5766-679X
                Article
                294
                10.1186/s13072-019-0294-5
                6702750
                31434570
                f973356a-3175-46d0-aa3a-830e1f07ed99
                © The Author(s) 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 7 May 2019
                : 10 July 2019
                Funding
                Funded by: DFG
                Award ID: TRR81/3
                Funded by: UKGM
                Award ID: Projekt Nr. 5/2016
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2019

                Genetics
                shprh,dna repair,snf2,nucleosome,ubiquitination/ubiquitylation
                Genetics
                shprh, dna repair, snf2, nucleosome, ubiquitination/ubiquitylation

                Comments

                Comment on this article