26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lagrangian simulations of the transport of young air masses to the top of the Asian monsoon anticyclone and into the tropical pipe

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. We have performed backward trajectory calculations and simulations with the three-dimensional Chemical Lagrangian Model of the Stratosphere (CLaMS) for two succeeding monsoon seasons using artificial tracers of air mass origin. With these tracers we trace back the origin of young air masses (age <6 months) at the top of the Asian monsoon anticyclone and of air masses within the tropical pipe (6 months < age <18 months) during summer 2008. The occurrence of young air masses (<6 months) at the top of the Asian monsoon anticyclone up to ∼460 K is in agreement with satellite measurements of chlorodifluoromethane (HCFC-22) by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument. HCFC-22 can be considered as a regional tracer for continental eastern Asia and the Middle East as it is mainly emitted in this region. Our findings show that the transport of air masses from boundary layer sources in the region of the Asian monsoon into the tropical pipe occurs in three distinct steps. First, very fast uplift in “a convective range” transports air masses up to 360 K potential temperature within a few days. Second, air masses are uplifted from about 360 K up to 460 K within “an upward spiralling range” within a few months. The large-scale upward spiral extends from northern Africa to the western Pacific. The air masses are transported upwards by diabatic heating with a rate of up to 1–1.5 K per day, implying strong vertical transport above the Asian monsoon anticyclone. Third, transport of air masses occurs within the tropical pipe up to 550 K associated with the large-scale Brewer–Dobson circulation within ∼1 year. In the upward spiralling range, air masses are uplifted by diabatic heating across the (lapse rate) tropopause, which does not act as a transport barrier, in contrast to the extratropical tropopause. Further, in the upward spiralling range air masses from inside the Asian monsoon anticyclone are mixed with air masses convectively uplifted outside the core of the Asian monsoon anticyclone in the tropical adjacent regions. Moreover, the vertical transport of air masses from the Asian monsoon anticyclone into the tropical pipe is weak in terms of transported air masses compared to the transport from the monsoon anticyclone into the northern extratropical lower stratosphere. Air masses from the Asian monsoon anticyclone (India/China) contribute a minor fraction to the composition of air within the tropical pipe at 550 K (6 %), and the major fractions are from Southeast Asia (16 %) and the tropical Pacific (15 %).

          Related collections

          Most cited references78

          • Record: found
          • Abstract: not found
          • Article: not found

          The ERA-Interim reanalysis: configuration and performance of the data assimilation system

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Contributions of stratospheric water vapor to decadal changes in the rate of global warming.

            Stratospheric water vapor concentrations decreased by about 10% after the year 2000. Here we show that this acted to slow the rate of increase in global surface temperature over 2000-2009 by about 25% compared to that which would have occurred due only to carbon dioxide and other greenhouse gases. More limited data suggest that stratospheric water vapor probably increased between 1980 and 2000, which would have enhanced the decadal rate of surface warming during the 1990s by about 30% as compared to estimates neglecting this change. These findings show that stratospheric water vapor is an important driver of decadal global surface climate change.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Unraveling the mystery of Indian monsoon failure during El Niño .

              The 132-year historical rainfall record reveals that severe droughts in India have always been accompanied by El Niño events. Yet El Niño events have not always produced severe droughts. We show that El Niño events with the warmest sea surface temperature (SST) anomalies in the central equatorial Pacific are more effective in focusing drought-producing subsidence over India than events with the warmest SSTs in the eastern equatorial Pacific. The physical basis for such different impacts is established using atmospheric general circulation model experiments forced with idealized tropical Pacific warmings. These findings have important implications for Indian monsoon forecasting.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Atmospheric Chemistry and Physics
                Atmos. Chem. Phys.
                Copernicus GmbH
                1680-7324
                2019
                May 08 2019
                : 19
                : 9
                : 6007-6034
                Article
                10.5194/acp-19-6007-2019
                fc10e881-4b54-4ccf-b188-ca4e07170878
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Genetics
                Genetics

                Comments

                Comment on this article