23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The origin of widespread species in a poor dispersing lineage (diving beetle genus Deronectes)

      research-article
      ,
      PeerJ
      PeerJ Inc.
      Dispersion, Glacial refugia, Mediterranean peninsulas, Range expansion, Pleistocene glaciations

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In most lineages, most species have restricted geographic ranges, with only few reaching widespread distributions. How these widespread species reached their current ranges is an intriguing biogeographic and evolutionary question, especially in groups known to be poor dispersers. We reconstructed the biogeographic and temporal origin of the widespread species in a lineage with particularly poor dispersal capabilities, the diving beetle genus Deronectes (Dytiscidae). Most of the ca. 60 described species of Deronectes have narrow ranges in the Mediterranean area, with only four species with widespread European distributions. We sequenced four mitochondrial and two nuclear genes of 297 specimens of 109 different populations covering the entire distribution of the four lineages of Deronectes, including widespread species. Using Bayesian probabilities with an a priori evolutionary rate, we performed (1) a global phylogeny/phylogeography to estimate the relationships of the main lineages within each group and root them, and (2) demographic analyses of the best population coalescent model for each species group, including a reconstruction of the geographical history estimated from the distribution of the sampled localities. We also selected 56 specimens to test for the presence of Wolbachia, a maternally transmitted parasite that can alter the patterns of mtDNA variability. All species of the four studied groups originated in the southern Mediterranean peninsulas and were estimated to be of Pleistocene origin. In three of the four widespread species, the central and northern European populations were nested within those in the northern areas of the Anatolian, Balkan and Iberian peninsulas respectively, suggesting a range expansion at the edge of the southern refugia. In the Mediterranean peninsulas the widespread European species were replaced by vicariant taxa of recent origin. The fourth species ( D. moestus) was proven to be a composite of unrecognised lineages with more restricted distributions around the Western and Central Mediterranean. The analysis of Wolbachia showed a high prevalence of infection among Deronectes, especially in the D. aubei group, where all sequenced populations were infected with the only exception of the Cantabrian Mountains, the westernmost area of distribution of the lineage. In this group there was a phylogenetic incongruence between the mitochondrial and the nuclear sequence, although no clear pattern links this discordance to the Wolbachia infection. Our results suggest that, in different glacial cycles, populations that happened to be at the edge of the newly deglaciated areas took advantage of the optimal ecological conditions to expand their ranges to central and northern Europe. Once this favourable ecological window ended populations become isolated, resulting in the presence of closely related but distinct species in the Mediterranean peninsulas.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Wolbachia: master manipulators of invertebrate biology.

          Wolbachia are common intracellular bacteria that are found in arthropods and nematodes. These alphaproteobacteria endosymbionts are transmitted vertically through host eggs and alter host biology in diverse ways, including the induction of reproductive manipulations, such as feminization, parthenogenesis, male killing and sperm-egg incompatibility. They can also move horizontally across species boundaries, resulting in a widespread and global distribution in diverse invertebrate hosts. Here, we review the basic biology of Wolbachia, with emphasis on recent advances in our understanding of these fascinating endosymbionts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty.

            Recent developments in marginal likelihood estimation for model selection in the field of Bayesian phylogenetics and molecular evolution have emphasized the poor performance of the harmonic mean estimator (HME). Although these studies have shown the merits of new approaches applied to standard normally distributed examples and small real-world data sets, not much is currently known concerning the performance and computational issues of these methods when fitting complex evolutionary and population genetic models to empirical real-world data sets. Further, these approaches have not yet seen widespread application in the field due to the lack of implementations of these computationally demanding techniques in commonly used phylogenetic packages. We here investigate the performance of some of these new marginal likelihood estimators, specifically, path sampling (PS) and stepping-stone (SS) sampling for comparing models of demographic change and relaxed molecular clocks, using synthetic data and real-world examples for which unexpected inferences were made using the HME. Given the drastically increased computational demands of PS and SS sampling, we also investigate a posterior simulation-based analogue of Akaike's information criterion (AIC) through Markov chain Monte Carlo (MCMC), a model comparison approach that shares with the HME the appealing feature of having a low computational overhead over the original MCMC analysis. We confirm that the HME systematically overestimates the marginal likelihood and fails to yield reliable model classification and show that the AICM performs better and may be a useful initial evaluation of model choice but that it is also, to a lesser degree, unreliable. We show that PS and SS sampling substantially outperform these estimators and adjust the conclusions made concerning previous analyses for the three real-world data sets that we reanalyzed. The methods used in this article are now available in BEAST, a powerful user-friendly software package to perform Bayesian evolutionary analyses.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Developmental plasticity and evolution

                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                peerj
                peerj
                PeerJ
                PeerJ Inc. (San Francisco, USA )
                2167-8359
                27 September 2016
                2016
                : 4
                : e2514
                Affiliations
                [-1]Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) , Barcelona, Spain
                Article
                2514
                10.7717/peerj.2514
                5045878
                fc575860-186e-4a6d-b7b5-f7a3f0d5593f
                ©2016 García-Vázquez and Ribera

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 23 June 2016
                : 1 September 2016
                Funding
                Funded by: Government of Spain
                Funded by: Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya
                Award ID: SGR1532
                DG-V had a FPI PhD grant from the Government of Spain. This work was partially funded by projects CGL2010-15755 and CGL2013-48950-C2-1-P to IR, and the “Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya” (project SGR1532). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Biodiversity
                Biogeography
                Entomology
                Evolutionary Studies
                Zoology

                dispersion,glacial refugia,mediterranean peninsulas,range expansion,pleistocene glaciations

                Comments

                Comment on this article