27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      FIGNL1 is overexpressed in small cell lung cancer patients and enhances NCI-H446 cell resistance to cisplatin and etoposide

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abnormal DNA repair plays an important role in tumor occurrence, progression and resistance to therapy. Fidgetin-like 1 ( FIGNL1) expression was assayed in 42 small cell lung cancer (SCLC) and 45 normal lung specimens from Chinese patients by qRT-PCR. Notably, FIGNL1 was upregulated by 1.5-fold in the SCLC specimens compared to that noted in the normal counterparts. The SCLC cell line NCI-H446 that overexpresses FIGNL1 was adopted to explore the biological significance of FIGNL1 in SCLC. Even when FIGNL1 expression was suppressed by up to 48.6%, H446 cell growth was increased by only 10–16%. Although no significant changes in cell cycle distribution were observed in the H446 cells, the levels of cyclin E1 and CDK2, key cell cycle regulators, were significantly reduced. After downregulation of FIGNL1 expression by 13.5% in the H446 cells, the cells were 61.8% (24 h) to 29.1% (48 h) more sensitive to etoposide and cisplatin, respectively, consistent with the FIGNL1 function of DNA double-strand repair. The sensitivity of H446 cells to etoposide and cisplatin was negatively correlated with FIGNL1 expression. Meanwhile, an obvious positive correlation between DNA damage severity and the sensitization effect of FIGNL1 knockdown was observed. Since FIGNL1 is essential in the homologous recombination (HR) pathway, these findings suggest that abnormal activation of the HR pathway featured by FIGNL1 overexpression contributes to rapid progression and relapse of SCLC in addition to chemotherapy resistance. Further research assessing the functions and mechanisms of FIGNL1, and other HR pathway genes may disclose unique pathological characteristics of SCLC, and help identify potential therapeutic targets and biomarkers.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          A small cell lung cancer genome reports complex tobacco exposure signatures

          SUMMARY Cancer is driven by mutation. Worldwide, tobacco smoking is the major lifestyle exposure that causes cancer, exerting carcinogenicity through >60 chemicals that bind and mutate DNA. Using massively parallel sequencing technology, we sequenced a small cell lung cancer cell line, NCI-H209, to explore the mutational burden associated with tobacco smoking. 22,910 somatic substitutions were identified, including 132 in coding exons. Multiple mutation signatures testify to the cocktail of carcinogens in tobacco smoke and their proclivities for particular bases and surrounding sequence context. Effects of transcription-coupled repair and a second, more general expression-linked repair pathway were evident. We identified a tandem duplication that duplicates exons 3-8 of CHD7 in-frame, and another two lines carrying PVT1-CHD7 fusion genes, suggesting that CHD7 may be recurrently rearranged in this disease. These findings illustrate the potential for next-generation sequencing to provide unprecedented insights into mutational processes, cellular repair pathways and gene networks associated with cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell cycle control and cancer.

            Multiple genetic changes occur during the evolution of normal cells into cancer cells. This evolution is facilitated in cancer cells by loss of fidelity in the processes that replicate, repair, and segregate the genome. Recent advances in our understanding of the cell cycle reveal how fidelity is normally achieved by the coordinated activity of cyclin-dependent kinases, checkpoint controls, and repair pathways and how this fidelity can be abrogated by specific genetic changes. These insights suggest molecular mechanisms for cellular transformation and may help to identify potential targets for improved cancer therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Polymorphisms in DNA repair genes and associations with cancer risk.

              Common polymorphisms in DNA repair genes may alter protein function and an individual's capacity to repair damaged DNA; deficits in repair capacity may lead to genetic instability and carcinogenesis. To establish our overall understanding of possible in vivo relationships between DNA repair polymorphisms and the development of cancer, we performed a literature review of epidemiological studies that assessed associations between such polymorphisms and risk of cancer. Thirty studies of polymorphisms in OGG1, XRCC1, ERCC1, XPC, XPD, XPF, BRCA2, and XRCC3 were identified in the April 30, 2002 MEDLINE database (National Center for Biotechnology Information. PubMed Database: http://www.ncbi.nlm.nih.gov/entrez). These studies focused on adult glioma, bladder cancer, breast cancer, esophageal cancer, lung cancer, prostate cancer, skin cancer (melanoma and nonmelanoma), squamous cell carcinoma of the head and neck, and stomach cancer. We found that a small proportion of the published studies were large and population-based. Nonetheless, published data were consistent with associations between: (a) the OGG1 S326C variant and increased risk of various types of cancer; (b) the XRCC1 R194W variant and reduced risk of various types of cancer; and (c) the BRCA2 N372H variant and increased risk of breast cancer. Suggestive results were seen for polymorphisms in other genes; however, small sample sizes may have contributed to false-positive or false-negative findings. We conclude that large, well-designed studies of common polymorphisms in DNA repair genes are needed. Such studies may benefit from analysis of multiple genes or polymorphisms and from the consideration of relevant exposures that may influence the likelihood of cancer in the presence of reduced DNA repair capacity.
                Bookmark

                Author and article information

                Journal
                Oncol Rep
                Oncol. Rep
                Oncology Reports
                D.A. Spandidos
                1021-335X
                1791-2431
                April 2017
                01 March 2017
                01 March 2017
                : 37
                : 4
                : 1935-1942
                Affiliations
                [1 ]Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
                [2 ]State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
                [3 ]Department of Endoscopy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
                Author notes
                Correspondence to: Dr Wei Ma, State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China, E-mail: wma@ 123456sjtu.edu.cn
                Dr Haiping Zhang, Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai 200092, P.R. China, E-mail: zhp7341@ 123456sina.com
                [*]

                Contributed equally

                Article
                or-37-04-1935
                10.3892/or.2017.5483
                5367342
                28260065
                fc898184-ab46-423b-880a-e6023bb924b7
                Copyright: © Ma et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 04 July 2016
                : 18 November 2016
                Categories
                Articles

                small cell lung cancer,fignl1,dna repair,homologous recombination repair pathway,chemotherapy resistance

                Comments

                Comment on this article