0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of M5c regulator-medicated methylation modification patterns for prognosis and immune microenvironment in glioma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glioma is a common intracranial tumor and is generally associated with poor prognosis. Recently, numerous studies illustrated the importance of 5-methylcytosine (m5C) RNA modification to tumorigenesis. However, the prognostic value and immune correlation of m5C in glioma remain unclear. We obtained RNA expression and clinical information from The Cancer Genome Atlas (TCGA) and The Chinese Glioma Genome Atlas (CGGA) datasets to analyze. Nonnegative matrix factorization (NMF) was used to classify patients into two subgroups and compare these patients in survival and clinicopathological characteristics. CIBERSORT and single-sample gene-set algorithm (ssGSEA) methods were used to investigate the relationship between m5C and the immune environment. The Weighted correlation network analysis (WGCNA) and univariate Cox proportional hazard model (CoxPH) were used to construct a m5C-related signature. Most of m5C RNA methylation regulators presented differential expression and prognostic values. There were obvious relationships between immune infiltration cells and m5C regulators, especially NSUN7. In the m5C-related module from WGCNA, we found SEPT3, CHI3L1, PLBD1, PHYHIPL, SAMD8, RAP1B, B3GNT5, RER1, PTPN7, SLC39A1, and MXI1 were prognostic factors for glioma, and they were used to construct the signature. The great significance of m5C-related signature in predicting the survival of patients with glioma was confirmed in the validation sets and CGGA cohort.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          WGCNA: an R package for weighted correlation network analysis

          Background Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial. Results The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings. Conclusion The WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at .
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            GSVA: gene set variation analysis for microarray and RNA-Seq data

            Background Gene set enrichment (GSE) analysis is a popular framework for condensing information from gene expression profiles into a pathway or signature summary. The strengths of this approach over single gene analysis include noise and dimension reduction, as well as greater biological interpretability. As molecular profiling experiments move beyond simple case-control studies, robust and flexible GSE methodologies are needed that can model pathway activity within highly heterogeneous data sets. Results To address this challenge, we introduce Gene Set Variation Analysis (GSVA), a GSE method that estimates variation of pathway activity over a sample population in an unsupervised manner. We demonstrate the robustness of GSVA in a comparison with current state of the art sample-wise enrichment methods. Further, we provide examples of its utility in differential pathway activity and survival analysis. Lastly, we show how GSVA works analogously with data from both microarray and RNA-seq experiments. Conclusions GSVA provides increased power to detect subtle pathway activity changes over a sample population in comparison to corresponding methods. While GSE methods are generally regarded as end points of a bioinformatic analysis, GSVA constitutes a starting point to build pathway-centric models of biology. Moreover, GSVA contributes to the current need of GSE methods for RNA-seq data. GSVA is an open source software package for R which forms part of the Bioconductor project and can be downloaded at http://www.bioconductor.org.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Robust enumeration of cell subsets from tissue expression profiles

              We introduce CIBERSORT, a method for characterizing cell composition of complex tissues from their gene expression profiles. When applied to enumeration of hematopoietic subsets in RNA mixtures from fresh, frozen, and fixed tissues, including solid tumors, CIBERSORT outperformed other methods with respect to noise, unknown mixture content, and closely related cell types. CIBERSORT should enable large-scale analysis of RNA mixtures for cellular biomarkers and therapeutic targets (http://cibersort.stanford.edu).
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                Aging
                Aging (Albany NY)
                Impact Journals
                1945-4589
                15 November 2023
                06 November 2023
                : 15
                : 21
                : 12275-12295
                Affiliations
                [1 ]Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
                [2 ]Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610000, Sichuan, China
                [3 ]Department of Pharmacy, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
                Author notes
                [*]

                Co first author

                Correspondence to: Xianlei Yan; email: yanxianlei@student.cup.edu.cn
                Correspondence to: Quan Liu; email: liuq0928@163.com, https://orcid.org/0000-0002-7477-4987
                Article
                205179 205179
                10.18632/aging.205179
                10683591
                37934565
                0afaea63-9c02-4989-bb53-17a65322f471
                Copyright: © 2023 Xiao et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 16 June 2023
                : 02 October 2023
                Categories
                Research Paper

                Cell biology
                glioma,m5c,rna methylation,immune microenvironment,wgcna
                Cell biology
                glioma, m5c, rna methylation, immune microenvironment, wgcna

                Comments

                Comment on this article