9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-Wide Analysis of the DREB Subfamily in Saccharum spontaneum Reveals Their Functional Divergence During Cold and Drought Stresses

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Drought and cold stresses are the main environmental factors that affect the yield of sugarcane, and DREB genes play very important roles in tolerance to drought, cold, and other environmental stresses. In this study, bioinformatics analysis was performed to characterize Saccharum spontaneum SsDREB genes. RNA sequencing (RNA-seq) was used to detect the expression profiles of SsDREBs induced by cold and drought stresses. According to our results, there are 110 SsDREB subfamily proteins in S. spontaneum, which can be classified into six groups; 106 of these genes are distributed among 29 chromosomes. Inter- and intraspecies synteny analyses suggested that all DREB groups have undergone gene duplication, highlighting the polyploid events that played an important role in the expansion of the DREB subfamily. Furthermore, RNA-seq results showed that 45 SsDREBs were up- or downregulated under cold stress; 35 of them were found to be involved in responding to drought stress. According to protein–protein interaction analysis, SsDREB100, SsDREB102, and SsDREB105 play key roles during the response to cold stress. These results reveal that functional divergence exists between collinear homologous genes or among common origin genes in the DREB subfamily of S. spontaneum. This study presents a comprehensive analysis and systematic understanding of the precise mechanism of SsDREBs in response to abiotic stress and will lead to improvements in sugarcane.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide analysis of the ERF gene family in Arabidopsis and rice.

          Genes in the ERF family encode transcriptional regulators with a variety of functions involved in the developmental and physiological processes in plants. In this study, a comprehensive computational analysis identified 122 and 139 ERF family genes in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa L. subsp. japonica), respectively. A complete overview of this gene family in Arabidopsis is presented, including the gene structures, phylogeny, chromosome locations, and conserved motifs. In addition, a comparative analysis between these genes in Arabidopsis and rice was performed. As a result of these analyses, the ERF families in Arabidopsis and rice were divided into 12 and 15 groups, respectively, and several of these groups were further divided into subgroups. Based on the observation that 11 of these groups were present in both Arabidopsis and rice, it was concluded that the major functional diversification within the ERF family predated the monocot/dicot divergence. In contrast, some groups/subgroups are species specific. We discuss the relationship between the structure and function of the ERF family proteins based on these results and published information. It was further concluded that the expansion of the ERF family in plants might have been due to chromosomal/segmental duplication and tandem duplication, as well as more ancient transposition and homing. These results will be useful for future functional analyses of the ERF family genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression.

            DRE/CRT is a cis-acting element that is involved in gene expression responsive to drought and low-temperature stress in higher plants. DREB1A/CBF3 and DREB2A are transcription factors that specifically bind to DRE/CRT in Arabidopsis. We precisely analyzed the DNA-binding specificity of DREBs. Both DREBs specifically bound to six nucleotides (A/GCCGAC) of DRE. However, these proteins had different binding specificities to the second or third nucleotides of DRE. Gel mobility shift assay using mutant DREB proteins showed that the two amino acids, valine and glutamic acid conserved in the ERF/AP2 domains, especially valine, have important roles in DNA-binding specificity. In the Arabidopsis genome, 145 DREB/ERF-related proteins are encoded. These proteins were classified into five groups-AP-2 subfamily, RAV subfamily, DREB subfamily, ERF subfamily, and others. The DREB subfamily included three novel DREB1A- and six DREB2A-related proteins. We analyzed expression of novel genes for these proteins and discuss their roles in stress-responsive gene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis.

              Plant growth is greatly affected by drought and low temperature. Expression of a number of genes is induced by both drought and low temperature, although these stresses are quite different. Previous experiments have established that a cis-acting element named DRE (for dehydration-responsive element) plays an important role in both dehydration- and low-temperature-induced gene expression in Arabidopsis. Two cDNA clones that encode DRE binding proteins, DREB1A and DREB2A, were isolated by using the yeast one-hybrid screening technique. The two cDNA libraries were prepared from dehydrated and cold-treated rosette plants, respectively. The deduced amino acid sequences of DREB1A and DREB2A showed no significant sequence similarity, except in the conserved DNA binding domains found in the EREBP and APETALA2 proteins that function in ethylene-responsive expression and floral morphogenesis, respectively. Both the DREB1A and DREB2A proteins specifically bound to the DRE sequence in vitro and activated the transcription of the b-glucuronidase reporter gene driven by the DRE sequence in Arabidopsis leaf protoplasts. Expression of the DREB1A gene and its two homologs was induced by low-temperature stress, whereas expression of the DREB2A gene and its single homolog was induced by dehydration. Overexpression of the DREB1A cDNA in transgenic Arabidopsis plants not only induced strong expression of the target genes under unstressed conditions but also caused dwarfed phenotypes in the transgenic plants. These transgenic plants also revealed freezing and dehydration tolerance. In contrast, overexpression of the DREB2A cDNA induced weak expression of the target genes under unstressed conditions and caused growth retardation of the transgenic plants. These results indicate that two independent families of DREB proteins, DREB1 and DREB2, function as trans-acting factors in two separate signal transduction pathways under low-temperature and dehydration conditions, respectively.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                05 February 2020
                2019
                : 10
                : 1326
                Affiliations
                [1] 1Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi) , Nanning, China
                [2] 2Nanning Institute of Agricultural Sciences, Guangxi Academy of Agricultural Science , Nanning, China
                Author notes

                Edited by: Mehar Hasan Asif, National Botanical Research Institute (CSIR), India

                Reviewed by: Hamed Bostan, North Carolina State University, United States; Jinpeng Wang, North China University of Science and Technology, China

                *Correspondence: Yangrui Li, liyr@ 123456gxaas.net ; Jianming Wu, wujianming2004@ 123456126.com

                This article was submitted to Bioinformatics and Computational Biology, a section of the journal Frontiers in Genetics

                †These authors have contributed equally to this work

                Article
                10.3389/fgene.2019.01326
                7013043
                32117408
                11151cfb-5109-4039-9f20-fb0a508f3e1b
                Copyright © 2020 Huang, Song, Chen, Zhang, Li, Liang, Qiu, Fan, Zhou, Zhou, Lakshmanan, Li and Wu

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 September 2019
                : 05 December 2019
                Page count
                Figures: 8, Tables: 2, Equations: 0, References: 73, Pages: 16, Words: 7182
                Categories
                Genetics
                Original Research

                Genetics
                dreb,transcription factor,phylogenetic tree,abiotic stress response,sugarcane
                Genetics
                dreb, transcription factor, phylogenetic tree, abiotic stress response, sugarcane

                Comments

                Comment on this article