15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Independent specialization of the human and mouse X chromosomes for the male germline

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We compared the human and mouse X chromosomes to systematically test Ohno’s law, which states that the gene content of X chromosomes is conserved across placental mammals 1 . First, we improved the accuracy of the human X-chromosome reference sequence through single-haplotype sequencing of ampliconic regions. This closed gaps in the reference sequence, corrected previously misassembled regions, and identified new palindromic amplicons. Our subsequent analysis led us to conclude that the evolution of human and mouse X chromosomes was bimodal. In accord with Ohno’s law, 94–95% of X-linked single-copy genes are shared between human and mouse; most are expressed in both sexes. Strikingly, most X-ampliconic genes are exceptions to Ohno’s law: only 31% of human and 22% of mouse X-ampliconic genes share orthologs. X-ampliconic genes are expressed predominantly in testicular germ cells, and many were independently acquired since the common ancestor of humans and mice, specializing portions of their X chromosomes for sperm production.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          The evolution of gene expression levels in mammalian organs.

          Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped by purifying selection, we identify numerous potentially selectively driven expression switches, which occurred at different rates across lineages and tissues and which probably contributed to the specific organ biology of various mammals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human-mouse alignments with BLASTZ.

            The Mouse Genome Analysis Consortium aligned the human and mouse genome sequences for a variety of purposes, using alignment programs that suited the various needs. For investigating issues regarding genome evolution, a particularly sensitive method was needed to permit alignment of a large proportion of the neutrally evolving regions. We selected a program called BLASTZ, an independent implementation of the Gapped BLAST algorithm specifically designed for aligning two long genomic sequences. BLASTZ was subsequently modified, both to attain efficiency adequate for aligning entire mammalian genomes and to increase its sensitivity. This work describes BLASTZ, its modifications, the hardware environment on which we run it, and several empirical studies to validate its results.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The UCSC Genome Browser database: update 2011

              The University of California, Santa Cruz Genome Browser (http://genome.ucsc.edu) offers online access to a database of genomic sequence and annotation data for a wide variety of organisms. The Browser also has many tools for visualizing, comparing and analyzing both publicly available and user-generated genomic data sets, aligning sequences and uploading user data. Among the features released this year are a gene search tool and annotation track drag-reorder functionality as well as support for BAM and BigWig/BigBed file formats. New display enhancements include overlay of multiple wiggle tracks through use of transparent coloring, options for displaying transformed wiggle data, a ‘mean+whiskers’ windowing function for display of wiggle data at high zoom levels, and more color schemes for microarray data. New data highlights include seven new genome assemblies, a Neandertal genome data portal, phenotype and disease association data, a human RNA editing track, and a zebrafish Conservation track. We also describe updates to existing tracks.
                Bookmark

                Author and article information

                Journal
                9216904
                2419
                Nat Genet
                Nat. Genet.
                Nature genetics
                1061-4036
                1546-1718
                24 July 2013
                21 July 2013
                September 2013
                01 March 2014
                : 45
                : 9
                : 1083-1087
                Affiliations
                [1 ]Whitehead Institute, Cambridge, Massachusetts, USA
                [2 ]Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
                [3 ]Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
                [4 ]The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
                [5 ]The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
                Article
                NIHMS498302
                10.1038/ng.2705
                3758364
                23872635
                149d9366-9bef-439d-83b9-6861a1a5bf89

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Genetics
                Genetics

                Comments

                Comment on this article