54
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Network of Multi-Tasking Proteins at the DNA Replication Fork Preserves Genome Stability

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To elucidate the network that maintains high fidelity genome replication, we have introduced two conditional mutant alleles of DNA2, an essential DNA replication gene, into each of the approximately 4,700 viable yeast deletion mutants and determined the fitness of the double mutants. Fifty-six DNA2-interacting genes were identified. Clustering analysis of genomic synthetic lethality profiles of each of 43 of the DNA2-interacting genes defines a network (consisting of 322 genes and 876 interactions) whose topology provides clues as to how replication proteins coordinate regulation and repair to protect genome integrity. The results also shed new light on the functions of the query gene DNA2, which, despite many years of study, remain controversial, especially its proposed role in Okazaki fragment processing and the nature of its in vivo substrates. Because of the multifunctional nature of virtually all proteins at the replication fork, the meaning of any single genetic interaction is inherently ambiguous. The multiplexing nature of the current studies, however, combined with follow-up supporting experiments, reveals most if not all of the unique pathways requiring Dna2p. These include not only Okazaki fragment processing and DNA repair but also chromatin dynamics.

          Synopsis

          Maintenance of genome stability from generation to generation is a primary defense against mutation and ensuing disease. Thus, the cell has evolved complex mechanisms, consisting of redundant, partially overlapping pathways, to protect the fidelity of genome inheritance. Using modern genetic screening techniques that allow one to investigate every gene in yeast that might be involved in these pathways, the researchers have defined a network consisting of 322 genes that together safeguard the DNA replication process. Previous approaches were limited to defining the interaction of one or a few genes, but the availability of mutants affecting all of the nonessential yeast genes allowed the identification of over 800 interactions in this study. In addition, the synthetic genetic array technique used in this study allowed identification of every nonessential gene in yeast that interacts with an essential replication protein, Dna2p. The comprehensiveness of the approach identified most, if not all, of the pathways in which the multitasking Dna2p participates, in a single experiment. The genomic scale of the study significantly accelerates understanding of this protein over traditional, low-throughput genetic methods.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: found
          • Article: not found

          DNA helicase Srs2 disrupts the Rad51 presynaptic filament.

          Mutations in the Saccharomyces cerevisiae gene SRS2 result in the yeast's sensitivity to genotoxic agents, failure to recover or adapt from DNA damage checkpoint-mediated cell cycle arrest, slow growth, chromosome loss, and hyper-recombination. Furthermore, double mutant strains, with mutations in DNA helicase genes SRS2 and SGS1, show low viability that can be overcome by inactivating recombination, implying that untimely recombination is the cause of growth impairment. Here we clarify the role of SRS2 in recombination modulation by purifying its encoded product and examining its interactions with the Rad51 recombinase. Srs2 has a robust ATPase activity that is dependent on single-stranded DNA (ssDNA) and binds Rad51, but the addition of a catalytic quantity of Srs2 to Rad51-mediated recombination reactions causes severe inhibition of these reactions. We show that Srs2 acts by dislodging Rad51 from ssDNA. Thus, the attenuation of recombination efficiency by Srs2 stems primarily from its ability to dismantle the Rad51 presynaptic filament efficiently. Our findings have implications for the basis of Bloom's and Werner's syndromes, which are caused by mutations in DNA helicases and are characterized by increased frequencies of recombination and a predisposition to cancers and accelerated ageing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex.

            The checkpoint regulatory mechanism has an important role in maintaining the integrity of the genome. This is particularly important in S phase of the cell cycle, when genomic DNA is most susceptible to various environmental hazards. When chemical agents damage DNA, activation of checkpoint signalling pathways results in a temporary cessation of DNA replication. A replication-pausing complex is believed to be created at the arrested forks to activate further checkpoint cascades, leading to repair of the damaged DNA. Thus, checkpoint factors are thought to act not only to arrest replication but also to maintain a stable replication complex at replication forks. However, the molecular mechanism coupling checkpoint regulation and replication arrest is unknown. Here we demonstrate that the checkpoint regulatory proteins Tof1 and Mrc1 interact directly with the DNA replication machinery in Saccharomyces cerevisiae. When hydroxyurea blocks chromosomal replication, this assembly forms a stable pausing structure that serves to anchor subsequent DNA repair events.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair.

              The process of homologous recombination is a major DNA repair pathway that operates on DNA double-strand breaks, and possibly other kinds of DNA lesions, to promote error-free repair. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing-radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes, and Rad51, Mre11, and Rad50 are also conserved in prokaryotes and archaea. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Although sensitivity to ionizing radiation is a universal feature of rad52 group mutants, the mutants show considerable heterogeneity in different assays for recombinational repair of double-strand breaks and spontaneous mitotic recombination. Herein, I provide an overview of recent biochemical and structural analyses of the Rad52 group proteins and discuss how this information can be incorporated into genetic studies of recombination.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                pgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                December 2005
                2 December 2005
                12 October 2005
                : 1
                : 6
                : e61
                Affiliations
                [1 ] Braun Laboratories, California Institute of Technology, Pasadena, California, United States of America
                [2 ] Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
                [3 ] Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, Canada
                Yale University, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: jcampbel@ 123456its.caltech.edu
                Article
                plge-01-05-14
                10.1371/journal.pgen.0010061
                1298934
                16327883
                237baa0f-40b9-4be0-b04c-9fa4eee397e2
                Copyright: © 2005 Budd et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 3 August 2005
                : 12 October 2005
                Page count
                Pages: 1
                Categories
                Research Article
                Custom metadata
                Budd ME, Tong AHY, Polaczek P, Peng X, Boone C, et al. (2005) A network of multi-tasking proteins at the DNA replication fork preserves genome stability. PLoS Genet 1(6): e61.

                Genetics
                Genetics

                Comments

                Comment on this article