12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Adaptive modeling of viral diseases in bats with a focus on rabies

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many emerging and reemerging viruses, such as rabies, SARS, Marburg, and Ebola have bat populations as disease reservoirs. Understanding the spillover from bats to humans and other animals, and the associated health risks requires an analysis of the disease dynamics in bat populations. Traditional compartmental epizootic models, which are relatively easy to implement and analyze, usually impose unrealistic aggregation assumptions about disease-related structure and depend on parameters that frequently are not measurable in field conditions. We propose a novel combination of computational and adaptive modeling approaches that address the maintenance of emerging diseases in bat colonies through individual (intra-host) models of the response of the host to a viral challenge. The dynamics of the individual models are used to define survival, susceptibility and transmission conditions relevant to epizootics as well as to develop and parametrize models of the disease evolution into uniform and diverse populations. Applications of the proposed approach to modeling the effects of immunological heterogeneity on the dynamics of bat rabies are presented.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats.

          Although the finding of severe acute respiratory syndrome coronavirus (SARS-CoV) in caged palm civets from live animal markets in China has provided evidence for interspecies transmission in the genesis of the SARS epidemic, subsequent studies suggested that the civet may have served only as an amplification host for SARS-CoV. In a surveillance study for CoV in noncaged animals from the wild areas of the Hong Kong Special Administration Region, we identified a CoV closely related to SARS-CoV (bat-SARS-CoV) from 23 (39%) of 59 anal swabs of wild Chinese horseshoe bats (Rhinolophus sinicus) by using RT-PCR. Sequencing and analysis of three bat-SARS-CoV genomes from samples collected at different dates showed that bat-SARS-CoV is closely related to SARS-CoV from humans and civets. Phylogenetic analysis showed that bat-SARS-CoV formed a distinct cluster with SARS-CoV as group 2b CoV, distantly related to known group 2 CoV. Most differences between the bat-SARS-CoV and SARS-CoV genomes were observed in the spike genes, ORF 3 and ORF 8, which are the regions where most variations also were observed between human and civet SARS-CoV genomes. In addition, the presence of a 29-bp insertion in ORF 8 of bat-SARS-CoV genome, not in most human SARS-CoV genomes, suggests that it has a common ancestor with civet SARS-CoV. Antibody against recombinant bat-SARS-CoV nucleocapsid protein was detected in 84% of Chinese horseshoe bats by using an enzyme immunoassay. Neutralizing antibody to human SARS-CoV also was detected in bats with lower viral loads. Precautions should be exercised in the handling of these animals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of a novel coronavirus in bats.

            Exotic wildlife can act as reservoirs of diseases that are endemic in the area or can be the source of new emerging diseases through interspecies transmission. The recent emergence of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) highlights the importance of virus surveillance in wild animals. Here, we report the identification of a novel bat coronavirus through surveillance of coronaviruses in wildlife. Analyses of the RNA sequence from the ORF1b and S-gene regions indicated that the virus is a group 1 coronavirus. The virus was detected in fecal and respiratory samples from three bat species (Miniopterus spp.). In particular, 63% (12 of 19) of fecal samples from Miniopterus pusillus were positive for the virus. These findings suggest that this virus might be commonly circulating in M. pusillus in Hong Kong.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Isolation of Nipah virus from Malaysian Island flying-foxes.

              In late 1998, Nipah virus emerged in peninsular Malaysia and caused fatal disease in domestic pigs and humans and substantial economic loss to the local pig industry. Surveillance of wildlife species during the outbreak showed neutralizing antibodies to Nipah virus mainly in Island flying-foxes (Pteropus hypomelanus) and Malayan flying-foxes (Pteropus vampyrus) but no virus reactive with anti-Nipah virus antibodies was isolated. We adopted a novel approach of collecting urine from these Island flying-foxes and swabs of their partially eaten fruits. Three viral isolates (two from urine and one from a partially eaten fruit swab) that caused Nipah virus-like syncytial cytopathic effect in Vero cells and stained strongly with Nipah- and Hendra-specific antibodies were isolated. Molecular sequencing and analysis of the 11,200-nucleotide fragment representing the beginning of the nucleocapsid gene to the end of the glycoprotein gene of one isolate confirmed the isolate to be Nipah virus with a sequence deviation of five to six nucleotides from Nipah virus isolated from humans. The isolation of Nipah virus from the Island flying-fox corroborates the serological evidence that it is one of the natural hosts of the virus.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Theor Biol
                J. Theor. Biol
                Journal of Theoretical Biology
                Elsevier Ltd. Published by Elsevier Ltd.
                0022-5193
                1095-8541
                13 August 2008
                7 November 2008
                13 August 2008
                : 255
                : 1
                : 69-80
                Affiliations
                [a ]Department of Ecology and Evolutionary Biology, University of Tennessee, 569 Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996-1610, USA
                [b ]Division of Viral and Rickettsial Diseases, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
                Author notes
                [* ]Corresponding author. Present address: Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., LE-400, P.O. Box 19024, Seattle, WA 98109-1024 U.S.A. dobromir@ 123456scharp.org
                Article
                S0022-5193(08)00421-9
                10.1016/j.jtbi.2008.08.007
                7126102
                18761020
                254361b8-da2a-4486-83e1-0e0c87418aac
                Copyright © 2008 Elsevier Ltd. Published by Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 24 January 2008
                : 6 June 2008
                : 7 August 2008
                Categories
                Article

                Comparative biology
                immune system,viral infection,rabies,individual heterogeneity,disease processes and demographics,bats

                Comments

                Comment on this article