9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of epigenetic mechanisms in the regulation of gene expression in the cyclical endometrium

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The human endometrium is a highly dynamic tissue whose function is mainly regulated by the ovarian steroid hormones estradiol and progesterone. The serum levels of these and other hormones are associated with three specific phases that compose the endometrial cycle: menstrual, proliferative, and secretory. Throughout this cycle, the endometrium exhibits different transcriptional networks according to the genes expressed in each phase. Epigenetic mechanisms are crucial in the fine-tuning of gene expression to generate such transcriptional networks. The present review aims to provide an overview of current research focused on the epigenetic mechanisms that regulate gene expression in the cyclical endometrium and discuss the technical and clinical perspectives regarding this topic.

          Main body

          The main epigenetic mechanisms reported are DNA methylation, histone post-translational modifications, and non-coding RNAs. These epigenetic mechanisms induce the expression of genes associated with transcriptional regulation, endometrial epithelial growth, angiogenesis, and stromal cell proliferation during the proliferative phase. During the secretory phase, epigenetic mechanisms promote the expression of genes associated with hormone response, insulin signaling, decidualization, and embryo implantation. Furthermore, the global content of specific epigenetic modifications and the gene expression of non-coding RNAs and epigenetic modifiers vary according to the menstrual cycle phase. In vitro and cell type-specific studies have demonstrated that epithelial and stromal cells undergo particular epigenetic changes that modulate their transcriptional networks to accomplish their function during decidualization and implantation.

          Conclusion and perspectives

          Epigenetic mechanisms are emerging as key players in regulating transcriptional networks associated with key processes and functions of the cyclical endometrium. Further studies using next-generation sequencing and single-cell technology are warranted to explore the role of other epigenetic mechanisms in each cell type that composes the endometrium throughout the menstrual cycle. The application of this knowledge will definitively provide essential information to understand the pathological mechanisms of endometrial diseases, such as endometriosis and endometrial cancer, and to identify potential therapeutic targets and improve women’s health.

          Related collections

          Most cited references220

          • Record: found
          • Abstract: found
          • Article: not found

          Circular RNAs are a large class of animal RNAs with regulatory potency.

          Circular RNAs (circRNAs) in animals are an enigmatic class of RNA with unknown function. To explore circRNAs systematically, we sequenced and computationally analysed human, mouse and nematode RNA. We detected thousands of well-expressed, stable circRNAs, often showing tissue/developmental-stage-specific expression. Sequence analysis indicated important regulatory functions for circRNAs. We found that a human circRNA, antisense to the cerebellar degeneration-related protein 1 transcript (CDR1as), is densely bound by microRNA (miRNA) effector complexes and harbours 63 conserved binding sites for the ancient miRNA miR-7. Further analyses indicated that CDR1as functions to bind miR-7 in neuronal tissues. Human CDR1as expression in zebrafish impaired midbrain development, similar to knocking down miR-7, suggesting that CDR1as is a miRNA antagonist with a miRNA-binding capacity ten times higher than any other known transcript. Together, our data provide evidence that circRNAs form a large class of post-transcriptional regulators. Numerous circRNAs form by head-to-tail splicing of exons, suggesting previously unrecognized regulatory potential of coding sequences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?

            Here, we present a unifying hypothesis about how messenger RNAs, transcribed pseudogenes, and long noncoding RNAs "talk" to each other using microRNA response elements (MREs) as letters of a new language. We propose that this "competing endogenous RNA" (ceRNA) activity forms a large-scale regulatory network across the transcriptome, greatly expanding the functional genetic information in the human genome and playing important roles in pathological conditions, such as cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update)

              Abstract Biological data analysis often deals with lists of genes arising from various studies. The g:Profiler toolset is widely used for finding biological categories enriched in gene lists, conversions between gene identifiers and mappings to their orthologs. The mission of g:Profiler is to provide a reliable service based on up-to-date high quality data in a convenient manner across many evidence types, identifier spaces and organisms. g:Profiler relies on Ensembl as a primary data source and follows their quarterly release cycle while updating the other data sources simultaneously. The current update provides a better user experience due to a modern responsive web interface, standardised API and libraries. The results are delivered through an interactive and configurable web design. Results can be downloaded as publication ready visualisations or delimited text files. In the current update we have extended the support to 467 species and strains, including vertebrates, plants, fungi, insects and parasites. By supporting user uploaded custom GMT files, g:Profiler is now capable of analysing data from any organism. All past releases are maintained for reproducibility and transparency. The 2019 update introduces an extensive technical rewrite making the services faster and more flexible. g:Profiler is freely available at https://biit.cs.ut.ee/gprofiler.
                Bookmark

                Author and article information

                Contributors
                vamer@comunidad.unam.mx
                Journal
                Clin Epigenetics
                Clin Epigenetics
                Clinical Epigenetics
                BioMed Central (London )
                1868-7075
                1868-7083
                25 May 2021
                25 May 2021
                2021
                : 13
                : 116
                Affiliations
                [1 ]GRID grid.9486.3, ISNI 0000 0001 2159 0001, Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, , Universidad Nacional Autónoma de México, ; Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000 Ciudad de México, Mexico
                [2 ]GRID grid.419218.7, ISNI 0000 0004 1773 5302, Departamento de Inmunobioquímica, , Instituto Nacional de Perinatología, ; Ciudad de México, Mexico
                Author information
                http://orcid.org/0000-0001-7151-2976
                Article
                1103
                10.1186/s13148-021-01103-8
                8146649
                34034824
                34c757e7-f789-40d5-9581-cecf7b438c6d
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 7 March 2021
                : 13 May 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100003141, Consejo Nacional de Ciencia y Tecnología;
                Award ID: A1-S-26749
                Award Recipient :
                Funded by: INSTITUTO NACIONAL DE PERINATOLOGIA
                Award ID: 571, 3000-20109-01-571-17
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100006087, Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México;
                Award ID: IA209520
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2021

                Genetics
                endometrium,epigenetic,proliferative phase,secretory phase,sex hormones,endometrial disease
                Genetics
                endometrium, epigenetic, proliferative phase, secretory phase, sex hormones, endometrial disease

                Comments

                Comment on this article