64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present the YEAst Search for Transcriptional Regulators And Consensus Tracking (YEASTRACT; ) database, a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. This database is a repository of 12 346 regulatory associations between transcription factors and target genes, based on experimental evidence which was spread throughout 861 bibliographic references. It also includes 257 specific DNA-binding sites for more than a hundred characterized transcription factors. Further information about each yeast gene included in the database was obtained from Saccharomyces Genome Database (SGD), Regulatory Sequences Analysis Tools and Gene Ontology (GO) Consortium. Computational tools are also provided to facilitate the exploitation of the gathered data when solving a number of biological questions as exemplified in the Tutorial also available on the system. YEASTRACT allows the identification of documented or potential transcription regulators of a given gene and of documented or potential regulons for each transcription factor. It also renders possible the comparison between DNA motifs, such as those found to be over-represented in the promoter regions of co-regulated genes, and the transcription factor-binding sites described in the literature. The system also provides an useful mechanism for grouping a list of genes (for instance a set of genes with similar expression profiles as revealed by microarray analysis) based on their regulatory associations with known transcription factors.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SGD: Saccharomyces Genome Database.

            J. Cherry (1998)
            The Saccharomyces Genome Database (SGD) provides Internet access to the complete Saccharomyces cerevisiae genomic sequence, its genes and their products, the phenotypes of its mutants, and the literature supporting these data. The amount of information and the number of features provided by SGD have increased greatly following the release of the S.cerevisiae genomic sequence, which is currently the only complete sequence of a eukaryotic genome. SGD aids researchers by providing not only basic information, but also tools such as sequence similarity searching that lead to detailed information about features of the genome and relationships between genes. SGD presents information using a variety of user-friendly, dynamically created graphical displays illustrating physical, genetic and sequence feature maps. SGD can be accessed via the World Wide Web at http://genome-www.stanford.edu/Saccharomyces/
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulatory sequence analysis tools.

              The web resource Regulatory Sequence Analysis Tools (RSAT) (http://rsat.ulb.ac.be/rsat) offers a collection of software tools dedicated to the prediction of regulatory sites in non-coding DNA sequences. These tools include sequence retrieval, pattern discovery, pattern matching, genome-scale pattern matching, feature-map drawing, random sequence generation and other utilities. Alternative formats are supported for the representation of regulatory motifs (strings or position-specific scoring matrices) and several algorithms are proposed for pattern discovery. RSAT currently holds >100 fully sequenced genomes and these data are regularly updated from GenBank.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Research
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                01 January 2006
                01 January 2006
                28 December 2005
                : 34
                : Database issue
                : D446-D451
                Affiliations
                1Biological Sciences Research Group, Centro de Engenharia Biológica e Química, Instituto Superior Técnico Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
                2INESC-ID R. Alves Redol, 9, 1000 Lisbon, Portugal
                3Instituto Superior Técnico Avenida Rovisco Pais, 1049-001, Lisbon, Portugal
                Author notes
                *To whom correspondence should be addressed. Tel: +351 218417682; Fax: +351 218489199; Email: isacorreia@ 123456ist.utl.pt

                The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors

                Article
                10.1093/nar/gkj013
                1347376
                16381908
                4b348bc7-5ddb-4b51-8edb-562c8b30839e
                © The Author 2006. Published by Oxford University Press. All rights reserved

                The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@ 123456oxfordjournals.org

                History
                : 27 July 2005
                : 14 September 2005
                : 14 September 2005
                Categories
                Article

                Genetics
                Genetics

                Comments

                Comment on this article