25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptome analysis highlights key differentially expressed genes involved in cellulose and lignin biosynthesis of sugarcane genotypes varying in fiber content

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sugarcane ( Saccharum spp. hybrids) is a potential lignocellulosic feedstock for biofuel production due to its exceptional biomass accumulation ability, high convertible carbohydrate content and a favorable energy input/output ratio. Genetic modification of biofuel traits to improve biomass conversion requires an understanding of the regulation of carbohydrate and lignin biosynthesis. RNA-Seq was used to investigate the transcripts differentially expressed between the immature and mature tissues of the sugarcane genotypes varying in fiber content. Most of the differentially expressed transcripts were found to be down-regulated during stem maturation, highlighting their roles in active secondary cell-wall development in the younger tissues of both high and low fiber genotypes. Several cellulose synthase genes (including CesA2, CesA4, CesA7 and COBRA-like protein), lignin biosynthesis-related genes (ρ-coumarate 3-hydroxylase, ferulate 5-hydroxylase, cinnamyl alcohol dehydrogenase and gentiobiase) and transcription regulators for the secondary cell-wall synthesis (including LIM, MYB, PLATZ, IAA24, C2H2 and C2C2 DOF zinc finger gene families) were exclusively differentially expressed between immature and mature tissues of high fiber genotypes. These findings reveal target genes for subsequent research on the regulation of cellulose and lignin metabolism.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Small-sample estimation of negative binomial dispersion, with applications to SAGE data.

            We derive a quantile-adjusted conditional maximum likelihood estimator for the dispersion parameter of the negative binomial distribution and compare its performance, in terms of bias, to various other methods. Our estimation scheme outperforms all other methods in very small samples, typical of those from serial analysis of gene expression studies, the motivating data for this study. The impact of dispersion estimation on hypothesis testing is studied. We derive an "exact" test that outperforms the standard approximate asymptotic tests.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis.

              SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 (SND1) is a master transcriptional switch activating the developmental program of secondary wall biosynthesis. Here, we demonstrate that a battery of SND1-regulated transcription factors is required for normal secondary wall biosynthesis in Arabidopsis thaliana. The expression of 11 SND1-regulated transcription factors, namely, SND2, SND3, MYB103, MYB85, MYB52, MYB54, MYB69, MYB42, MYB43, MYB20, and KNAT7 (a Knotted1-like homeodomain protein), was developmentally associated with cells undergoing secondary wall thickening. Of these, dominant repression of SND2, SND3, MYB103, MYB85, MYB52, MYB54, and KNAT7 significantly reduced secondary wall thickening in fiber cells. Overexpression of SND2, SND3, and MYB103 increased secondary wall thickening in fibers, and overexpression of MYB85 led to ectopic deposition of lignin in epidermal and cortical cells in stems. Furthermore, SND2, SND3, MYB103, MYB85, MYB52, and MYB54 were able to induce secondary wall biosynthetic genes. Direct target analysis using the estrogen-inducible system revealed that MYB46, SND3, MYB103, and KNAT7 were direct targets of SND1 and also of its close homologs, NST1, NST2, and vessel-specific VND6 and VND7. Together, these results demonstrate that a transcriptional network consisting of SND1 and its downstream targets is involved in regulating secondary wall biosynthesis in fibers and that NST1, NST2, VND6, and VND7 are functional homologs of SND1 that regulate the same downstream targets in different cell types.
                Bookmark

                Author and article information

                Contributors
                robert.henry@uq.edu.au
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                2 August 2018
                2 August 2018
                2018
                : 8
                : 11612
                Affiliations
                [1 ]ISNI 0000 0000 9320 7537, GRID grid.1003.2, Queensland Alliance for Agriculture and Food Innovation, , The University of Queensland, St. Lucia, ; Queensland, 4072 Australia
                [2 ]ISNI 0000 0004 0505 3259, GRID grid.459991.9, ICAR-Sugarcane Breeding Institute, ; Coimbatore, 641007 Tamil Nadu India
                [3 ]GRID grid.440798.6, College of Agriculture and Forestry, , Hue University, ; Hue, Vietnam
                [4 ]Sugar Research Australia, Indooroopilly, Queensland, 4068 Australia
                Author information
                http://orcid.org/0000-0003-0782-2835
                http://orcid.org/0000-0002-4060-0292
                Article
                30033
                10.1038/s41598-018-30033-4
                6072797
                30072760
                55ff0d88-91d2-4ee7-92e9-b1861260716a
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 March 2018
                : 20 July 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article