Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Promising sensors for pharmaceutical pollutant adsorption using Clar’s goblet-based 2D membranes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study focuses on the design of new 2D membranes from connected Clar’s Goblet as a potential sensor for pharmaceutical pollutants, specifically the painkiller drugs aspirin, paracetamol, ibuprofen, and diclofenac. The electronic, optical, and interaction properties are investigated using density functional theory calculations. The Clar’s Goblet membranes (CGMs) that were chosen are semiconductors with an energy gap of around 1.5 eV, according to energy gap calculations and density of states. Molecular electrostatic potential (ESP) analysis shows that CGMs have electrophilic and nucleophilic sites, suggesting their suitability for interacting with pharmaceutical pollutants. The adsorption energies confirm the chemical adsorption of pharmaceutical pollutants with diclofenac showing the strongest adsorption. The UV–Vis absorption spectra of CGMs-drug complexes are analyzed, revealing a redshift compared to the absorption spectrum of CGMs alone, confirming the adsorption of these drugs. Further analysis using hole/electron examinations indicates that the type of excitation is local excitation rather than charge transfer excitation. This study quantitatively characterized hole and electron distribution in excited states using various indices. The analysis revealed local excitation transitions and significant charge transfer between the CGMs molecule and pharmaceutical pollutants. Additionally, non-covalent interaction analysis indicates the presence of van der Waals interactions, highlighting the adsorption behavior of the drugs. These results demonstrate the potential of CGMs as a highly sensitive sensor for pharmaceutical pollutants.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Multiwfn: a multifunctional wavefunction analyzer.

          Multiwfn is a multifunctional program for wavefunction analysis. Its main functions are: (1) Calculating and visualizing real space function, such as electrostatic potential and electron localization function at point, in a line, in a plane or in a spatial scope. (2) Population analysis. (3) Bond order analysis. (4) Orbital composition analysis. (5) Plot density-of-states and spectrum. (6) Topology analysis for electron density. Some other useful utilities involved in quantum chemistry studies are also provided. The built-in graph module enables the results of wavefunction analysis to be plotted directly or exported to high-quality graphic file. The program interface is very user-friendly and suitable for both research and teaching purpose. The code of Multiwfn is substantially optimized and parallelized. Its efficiency is demonstrated to be significantly higher than related programs with the same functions. Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn. The program is free of charge and open-source. Its precompiled file and source codes are available from http://multiwfn.codeplex.com. Copyright © 2011 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The rise of graphene.

            Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

              The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
                Bookmark

                Author and article information

                Contributors
                mahmoud.sakr@must.edu.eg
                hazemabdelhameed@gmail.com
                qfangzhang@gmail.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                9 January 2024
                9 January 2024
                2024
                : 14
                : 889
                Affiliations
                [1 ]GRID grid.440875.a, ISNI 0000 0004 1765 2064, Chemistry Department, Center of Basic Science (CBS), , Misr University of Science and Technology (MUST), ; 6th October City, Egypt
                [2 ]GRID grid.440875.a, ISNI 0000 0004 1765 2064, Physics Department, Center of Basic Science (CBS), , Misr University of Science and Technology (MUST), ; 6th October City, Egypt
                [3 ]Department of Physics and Astronomy, College of Science, King Saud University, ( https://ror.org/02f81g417) P.O. Box 2455, 11451 Riyadh, Saudi Arabia
                [4 ]Theoretical Physics Department, National Research Centre, ( https://ror.org/02n85j827) El-Buhouth Str., Dokki, Giza, 12622 Egypt
                [5 ]School of Materials Science and Engineering, Yancheng Institute of Technology, ( https://ror.org/04y8njc86) Yancheng, 224051 People’s Republic of China
                Article
                50802
                10.1038/s41598-023-50802-0
                10776697
                38195577
                5774d25a-c8b4-4c1f-8c56-a0a0cdff992b
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 10 October 2023
                : 26 December 2023
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2024

                Uncategorized
                chemistry,materials science,physics
                Uncategorized
                chemistry, materials science, physics

                Comments

                Comment on this article