31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of residues in the N-terminal PAS domains important for dimerization of Arnt and AhR

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The basic helix–loop–helix (bHLH).PAS dimeric transcription factors have crucial roles in development, stress response, oxygen homeostasis and neurogenesis. Their target gene specificity depends in part on partner protein choices, where dimerization with common partner Aryl hydrocarbon receptor nuclear translocator (Arnt) is an essential step towards forming active, DNA binding complexes. Using a new bacterial two-hybrid system that selects for loss of protein interactions, we have identified 22 amino acids in the N-terminal PAS domain of Arnt that are involved in heterodimerization with aryl hydrocarbon receptor (AhR). Of these, Arnt E163 and Arnt S190 were selective for the AhR/Arnt interaction, since mutations at these positions had little effect on Arnt dimerization with other bHLH.PAS partners, while substitution of Arnt D217 affected the interaction with both AhR and hypoxia inducible factor-1α but not with single minded 1 and 2 or neuronal PAS4. Arnt uses the same face of the N-terminal PAS domain for homo- and heterodimerization and mutational analysis of AhR demonstrated that the equivalent region is used by AhR when dimerizing with Arnt. These interfaces differ from the PAS β-scaffold surfaces used for dimerization between the C-terminal PAS domains of hypoxia inducible factor-2α and Arnt, commonly used for PAS domain interactions.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          The genetic landscape of a cell.

          A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for approximately 75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A generic protein purification method for protein complex characterization and proteome exploration.

            We have developed a generic procedure to purify proteins expressed at their natural level under native conditions using a novel tandem affinity purification (TAP) tag. The TAP tag allows the rapid purification of complexes from a relatively small number of cells without prior knowledge of the complex composition, activity, or function. Combined with mass spectrometry, the TAP strategy allows for the identification of proteins interacting with a given target protein. The TAP method has been tested in yeast but should be applicable to other cells or organisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases.

              Neovascularization and increased glycolysis, two universal characteristics of solid tumors, represent adaptations to a hypoxic microenvironment that are correlated with tumor invasion, metastasis, and lethality. Hypoxia-inducible factor 1 (HIF-1) activates transcription of genes encoding glucose transporters, glycolytic enzymes, and vascular endothelial growth factor. HIF-1 transcriptional activity is determined by regulated expression of the HIF-1alpha subunit. In this study, HIF-1alpha expression was analyzed by immunohistochemistry in 179 tumor specimens. HIF-1alpha was overexpressed in 13 of 19 tumor types compared with the respective normal tissues, including colon, breast, gastric, lung, skin, ovarian, pancreatic, prostate, and renal carcinomas. HIF-1alpha expression was correlated with aberrant p53 accumulation and cell proliferation. Preneoplastic lesions in breast, colon, and prostate overexpressed HIF-1alpha, whereas benign tumors in breast and uterus did not. HIF-1alpha overexpression was detected in only 29% of primary breast cancers but in 69% of breast cancer metastases. In brain tumors, HIF-1alpha immunohistochemistry demarcated areas of angiogenesis. These results provide the first clinical data indicating that HIF-1alpha may play an important role in human cancer progression.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                May 2011
                May 2011
                17 January 2011
                17 January 2011
                : 39
                : 9
                : 3695-3709
                Affiliations
                1School of Molecular and Biomedical Science and 2Australian Research Council Special Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, SA 5005, Australia
                Author notes
                *To whom correspondence should be addressed. Tel: +61 8 8303 7567; Fax: +61 8 8303 4362; Email: anne.chapmansmith@ 123456adelaide.edu.au
                Article
                gkq1336
                10.1093/nar/gkq1336
                3089468
                21245039
                5c1fb634-d42f-4c6e-bee1-b95c66efaca6
                © The Author(s) 2011. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 November 2010
                : 16 December 2010
                : 17 December 2010
                Page count
                Pages: 15
                Categories
                Molecular Biology

                Genetics
                Genetics

                Comments

                Comment on this article