24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A novel method for the normalization of microRNA RT-PCR data

      research-article
      1 , 1 ,
      BMC Medical Genomics
      BioMed Central
      The 2011 International Conference on Bioinformatics and Computational Biology (BIOCOMP'11)
      18-21 July 2011
      microRNA, RT-PCR, Normalization, Microarray

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          MicroRNAs (miRNAs) are short non-coding RNA molecules that regulate mRNA transcript levels and translation. Deregulation of microRNAs is indicated in a number of diseases and microRNAs are seen as a promising target for biomarker identification and drug development. miRNA expression is commonly measured by microarray or real-time polymerase chain reaction (RT-PCR). The findings of RT-PCR data are highly dependent on the normalization techniques used during preprocessing of the Cycle Threshold readings from RT-PCR. Some of the commonly used endogenous controls themselves have been discovered to be differentially expressed in various conditions such as cancer, making them inappropriate internal controls.

          Methods

          We demonstrate that RT-PCR data contains a systematic bias resulting in large variations in the Cycle Threshold (CT) values of the low-abundant miRNA samples. We propose a new data normalization method that considers all available microRNAs as endogenous controls. A weighted normalization approach is utilized to allow contribution from all microRNAs, weighted by their empirical stability.

          Results

          The systematic bias in RT-PCR data is illustrated on a microRNA dataset obtained from primary cutaneous melanocytic neoplasms. We show that through a single control parameter, this method is able to emulate other commonly used normalization methods and thus provides a more general approach. We explore the consistency of RT-PCR expression data with microarray expression by utilizing a dataset where both RT-PCR and microarray profiling data is available for the same miRNA samples.

          Conclusions

          A weighted normalization method allows the contribution of all of the miRNAs, whether they are highly abundant or have low expression levels. Our findings further suggest that the normalization of a particular miRNA should rely on only miRNAs that have comparable expression levels.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Characterization of microRNA expression profiles in normal human tissues

          Background Measuring the quantity of miRNAs in tissues of different physiological and pathological conditions is an important first step to investigate the functions of miRNAs. Matched samples from normal state can provide essential baseline references to analyze the variation of miRNA abundance. Results We provided expression data of 345 miRNAs in 40 normal human tissues, which identified universally expressed miRNAs, and several groups of miRNAs expressed exclusively or preferentially in certain tissue types. Many miRNAs with co-regulated expression patterns are located within the same genomic clusters, and candidate transcriptional factors that control the pattern of their expression may be identified by a comparative genomic strategy. Hierarchical clustering of normal tissues by their miRNA expression profiles basically followed the structure, anatomical locations, and physiological functions of the organs, suggesting that functions of a miRNA could be appreciated by linking to the biologies of the tissues in which it is uniquely expressed. Many predicted target genes of miRNAs that had specific reduced expression in brain and peripheral blood mononuclear cells are required for embryonic development of the nervous and hematopoietic systems based on database search. Conclusion We presented a global view of tissue distribution of miRNAs in relation to their chromosomal locations and genomic structures. We also described evidence from the cis-regulatory elements and the predicted target genes of miRNAs to support their tissue-specific functional roles to regulate the physiologies of the normal tissues in which they are expressed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Processing of intronic microRNAs.

            The majority of human microRNA (miRNA) loci are located within intronic regions and are transcribed by RNA polymerase II as part of their hosting transcription units. The primary transcripts are cleaved by Drosha to release approximately 70 nt pre-miRNAs that are subsequently processed by Dicer to generate mature approximately 22 nt miRNAs. It is generally believed that intronic miRNAs are released by Drosha from excised introns after the splicing reaction has occurred. However, our database searches and experiments indicate that intronic miRNAs can be processed from unspliced intronic regions before splicing catalysis. Intriguingly, cleavage of an intron by Drosha does not significantly affect the production of mature mRNA, suggesting that a continuous intron may not be required for splicing and that the exons may be tethered to each other. Hence, Drosha may cleave intronic miRNAs between the splicing commitment step and the excision step, thereby ensuring both miRNA biogenesis and protein synthesis from a single primary transcript. Our study provides a novel example of eukaryotic gene organization and RNA-processing control.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Data-driven normalization strategies for high-throughput quantitative RT-PCR

              Background High-throughput real-time quantitative reverse transcriptase polymerase chain reaction (qPCR) is a widely used technique in experiments where expression patterns of genes are to be profiled. Current stage technology allows the acquisition of profiles for a moderate number of genes (50 to a few thousand), and this number continues to grow. The use of appropriate normalization algorithms for qPCR-based data is therefore a highly important aspect of the data preprocessing pipeline. Results We present and evaluate two data-driven normalization methods that directly correct for technical variation and represent robust alternatives to standard housekeeping gene-based approaches. We evaluated the performance of these methods against a single gene housekeeping gene method and our results suggest that quantile normalization performs best. These methods are implemented in freely-available software as an R package qpcrNorm distributed through the Bioconductor project. Conclusion The utility of the approaches that we describe can be demonstrated most clearly in situations where standard housekeeping genes are regulated by some experimental condition. For large qPCR-based data sets, our approaches represent robust, data-driven strategies for normalization.
                Bookmark

                Author and article information

                Conference
                BMC Med Genomics
                BMC Med Genomics
                BMC Medical Genomics
                BioMed Central
                1755-8794
                2013
                23 January 2013
                : 6
                : Suppl 1
                : S14
                Affiliations
                [1 ]Center for integrated Bioinformatics, School of Biomedical Engineering, Science and Health System, Drexel University, 3120 Market Street, Philadelphia, PA 19104, USA
                Article
                1755-8794-6-S1-S14
                10.1186/1755-8794-6-S1-S14
                3552697
                23369279
                9192d3f2-83d3-4816-860b-4eb4efa95eaa
                Copyright ©2012 Qureshi and Sacan; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                The 2011 International Conference on Bioinformatics and Computational Biology (BIOCOMP'11)
                Las Vegas, NV, USA
                18-21 July 2011
                History
                Categories
                Proceedings

                Genetics
                microarray,microrna,normalization,rt-pcr
                Genetics
                microarray, microrna, normalization, rt-pcr

                Comments

                Comment on this article