0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Survival of gastric cancer in China from 2000 to 2022: A nationwide systematic review of hospital-based studies

      research-article
      1 , 1 , 1 , 2 , 3 , 4 , Global Health Epidemiology Reference Group
      Journal of Global Health
      International Society of Global Health

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Gastric cancer (GC) mortality continues to fall in industrialized countries, but still remains a public health concern in China, accounting for more than 370 000 deaths. We aimed to evaluate the survival of GC in China from 2000 to 2022 through a nationwide systematic review of hospital-based studies and to identify whether hospital-based studies show higher survival rates than population-based studies.

          Methods

          We searched PubMed, Embase, Web of Science, and the Chinese databases of CNKI and Wanfang for hospital-based studies on GC survival published between January 1, 2000, and January 20, 2022. We calculated the nationwide GC survival rate (SR) and its 95% confidence interval (CI) and conducted subgroup analyses on histologic type, subsite, tumour node metastasis (TNM) stage, therapy type, study design, and participant region. The study protocol was registered in PROSPERO (CRD-42019121559).

          Results

          The initial literature search returned 36 613 publications, among which 664 studies (180 798 participants) matched the inclusion criteria and were included in the meta-analysis. The pooled one-, two-, three- and five-year SRs of GC were 75.4% (95% CI = 74.0%-76.8%), 54.3% (95% CI = 50.1%-58.6%), 53.4% (95% CI = 50.4%-56.4%), and 44.5% (95% CI = 41.5%-47.5%), respectively. Subgroup analyses revealed an increase in three- and five-year SRs from 2006 to 2022. The five-year SR was highest among patients without lymph node metastasis (pooled SR = 67.8%, 95% CI = 62.8%-72.7%) and lowest among those with distant metastasis (pooled SR = 8.4%, 95% CI = 5.1%-11.7%).

          Conclusions

          Our findings illustrate that the long-term survival of GC has improved in China since 2000. Hospital-based studies have presented higher SRs than population-based surveillance.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer statistics in China, 2015.

            With increasing incidence and mortality, cancer is the leading cause of death in China and is a major public health problem. Because of China's massive population (1.37 billion), previous national incidence and mortality estimates have been limited to small samples of the population using data from the 1990s or based on a specific year. With high-quality data from an additional number of population-based registries now available through the National Central Cancer Registry of China, the authors analyzed data from 72 local, population-based cancer registries (2009-2011), representing 6.5% of the population, to estimate the number of new cases and cancer deaths for 2015. Data from 22 registries were used for trend analyses (2000-2011). The results indicated that an estimated 4292,000 new cancer cases and 2814,000 cancer deaths would occur in China in 2015, with lung cancer being the most common incident cancer and the leading cause of cancer death. Stomach, esophageal, and liver cancers were also commonly diagnosed and were identified as leading causes of cancer death. Residents of rural areas had significantly higher age-standardized (Segi population) incidence and mortality rates for all cancers combined than urban residents (213.6 per 100,000 vs 191.5 per 100,000 for incidence; 149.0 per 100,000 vs 109.5 per 100,000 for mortality, respectively). For all cancers combined, the incidence rates were stable during 2000 through 2011 for males (+0.2% per year; P = .1), whereas they increased significantly (+2.2% per year; P < .05) among females. In contrast, the mortality rates since 2006 have decreased significantly for both males (-1.4% per year; P < .05) and females (-1.1% per year; P < .05). Many of the estimated cancer cases and deaths can be prevented through reducing the prevalence of risk factors, while increasing the effectiveness of clinical care delivery, particularly for those living in rural areas and in disadvantaged populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012.

              Estimates of the worldwide incidence and mortality from 27 major cancers and for all cancers combined for 2012 are now available in the GLOBOCAN series of the International Agency for Research on Cancer. We review the sources and methods used in compiling the national cancer incidence and mortality estimates, and briefly describe the key results by cancer site and in 20 large "areas" of the world. Overall, there were 14.1 million new cases and 8.2 million deaths in 2012. The most commonly diagnosed cancers were lung (1.82 million), breast (1.67 million), and colorectal (1.36 million); the most common causes of cancer death were lung cancer (1.6 million deaths), liver cancer (745,000 deaths), and stomach cancer (723,000 deaths). © 2014 UICC.
                Bookmark

                Author and article information

                Journal
                J Glob Health
                J Glob Health
                JGH
                Journal of Global Health
                International Society of Global Health
                2047-2978
                2047-2986
                17 December 2022
                2022
                : 12
                : 11014
                Affiliations
                [1 ]School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
                [2 ]Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University
                [3 ]Cancer Hospital, Chinese Academy of Medical Sciences
                [4 ]School of Public Health and The Second Affiliated Hospital of Shandong First Medical University, Taian, China
                Author notes
                [*]

                Joint first authorship.

                Correspondence to:
Haifeng Hou, PhD, Professor
School of Public Health and The Second Affiliated Hospital of Shandong First Medical University
706 Taishan Street, Taian 271000
China
 hfhou@ 123456sdfmu.edu.cn
                Article
                jogh-12-11014
                10.7189/jogh.12.11014
                9759711
                36527356
                9468671e-41cf-4a79-acb7-dbb62748de92
                Copyright © 2022 by the Journal of Global Health. All rights reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                Page count
                Figures: 5, Tables: 3, Equations: 0, References: 37, Pages: 9
                Categories
                Research Theme 7: Health Transitions in China

                Public health
                Public health

                Comments

                Comment on this article