3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Analysis of UV-C Induced Resveratrol Accumulation in Polygonum cuspidatum Leaves

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resveratrol is one of the most studied plant secondary metabolites owing to its numerous health benefits. It is accumulated in some plants following biotic and abiotic stress pressures, including UV-C irradiation. Polygonum cuspidatum represents the major natural source of concentrated resveratrol but the underlying mechanisms as well as the effects of UV-C irradiation on resveratrol content have not yet been documented. Herein, we found that UV-C irradiation significantly increased by 2.6-fold and 1.6-fold the resveratrol content in irradiated leaf samples followed by a dark incubation for 6 h and 12 h, respectively, compared to the untreated samples. De novo transcriptome sequencing and assembly resulted into 165,013 unigenes with 98 unigenes mapped to the resveratrol biosynthetic pathway. Differential expression analysis showed that P. cuspidatum strongly induced the genes directly involved in the resveratrol synthesis, including phenylalanine ammonia-lyase, cinnamic acid 4-hydroxylase, 4-coumarate-CoA ligase and stilbene synthase ( STS) genes, while strongly decreased the chalcone synthase ( CHS) genes after exposure to UV-C. Since CHS and STS share the same substrate, P. cuspidatum tends to preferentially divert the substrate to the resveratrol synthesis pathway under UV-C treatment. We identified several members of the MYB, bHLH and ERF families as potential regulators of the resveratrol biosynthesis genes.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla.

            The analysis of the first plant genomes provided unexpected evidence for genome duplication events in species that had previously been considered as true diploids on the basis of their genetics. These polyploidization events may have had important consequences in plant evolution, in particular for species radiation and adaptation and for the modulation of functional capacities. Here we report a high-quality draft of the genome sequence of grapevine (Vitis vinifera) obtained from a highly homozygous genotype. The draft sequence of the grapevine genome is the fourth one produced so far for flowering plants, the second for a woody species and the first for a fruit crop (cultivated for both fruit and beverage). Grapevine was selected because of its important place in the cultural heritage of humanity beginning during the Neolithic period. Several large expansions of gene families with roles in aromatic features are observed. The grapevine genome has not undergone recent genome duplication, thus enabling the discovery of ancestral traits and features of the genetic organization of flowering plants. This analysis reveals the contribution of three ancestral genomes to the grapevine haploid content. This ancestral arrangement is common to many dicotyledonous plants but is absent from the genome of rice, which is a monocotyledon. Furthermore, we explain the chronology of previously described whole-genome duplication events in the evolution of flowering plants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets.

              TGICL is a pipeline for analysis of large Expressed Sequence Tags (EST) and mRNA databases in which the sequences are first clustered based on pairwise sequence similarity, and then assembled by individual clusters (optionally with quality values) to produce longer, more complete consensus sequences. The system can run on multi-CPU architectures including SMP and PVM.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                07 December 2019
                December 2019
                : 20
                : 24
                : 6185
                Affiliations
                Author notes
                [* ]Correspondence: yzpc19@ 123456126.com ; Tel.: +186-7256-3466
                Author information
                https://orcid.org/0000-0001-8899-8845
                Article
                ijms-20-06185
                10.3390/ijms20246185
                6940797
                31817915
                a59012ac-76f5-42cd-9212-b1f95824df30
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 11 November 2019
                : 04 December 2019
                Categories
                Article

                Molecular biology
                regulation,rna-seq,abiotic stress,biosynthesis pathway,chalcones,stilbenes
                Molecular biology
                regulation, rna-seq, abiotic stress, biosynthesis pathway, chalcones, stilbenes

                Comments

                Comment on this article