35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Manipulation of Behavioral Decline in Caenorhabditis elegans with the Rag GTPase raga-1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Normal aging leads to an inexorable decline in motor performance, contributing to medical morbidity and decreased quality of life. While much has been discovered about genetic determinants of lifespan, less is known about modifiers of age-related behavioral decline and whether new gene targets may be found which extend vigorous activity, with or without extending lifespan. Using Caenorhabditis elegans, we have developed a model of declining neuromuscular function and conducted a screen for increased behavioral activity in aged animals. In this model, behavioral function suffers from profound reductions in locomotory frequency, but coordination is strikingly preserved until very old age. By screening for enhancers of locomotion at advanced ages we identified the ras-related Rag GTPase raga-1 as a novel modifier of behavioral aging. raga-1 loss of function mutants showed vigorous swimming late in life. Genetic manipulations revealed that a gain of function raga-1 curtailed behavioral vitality and shortened lifespan, while a dominant negative raga-1 lengthened lifespan. Dietary restriction results indicated that a raga-1 mutant is relatively protected from the life-shortening effects of highly concentrated food, while RNAi experiments suggested that raga-1 acts in the highly conserved target of rapamycin (TOR) pathway in C. elegans. Rag GTPases were recently shown to mediate nutrient-dependent activation of TOR. This is the first demonstration of their dramatic effects on behavior and aging. This work indicates that novel modulators of behavioral function can be identified in screens, with implications for future study of the clinical amelioration of age-related decline.

          Author Summary

          As humans and animals age, there is an inevitable decrease in functional capacity. Elderly individuals can suffer from a decline in motor function, or the ability to move. Genetic studies in model organisms have led to the identification of genes that can prolong lifespan. Elongation of lifespan is less appealing, however, if there is not also an extension of vitality or enhanced functionality. Here, we have used a genetic model organism, the nematode worm Caenorhabditis elegans, to screen for mutations that result in enhanced vitality in older animals. We identified a new modifier of the aging of motor function, RAGA-1, a protein present in species from worms and fruit flies to humans. Animals with a raga-1 mutation move more vigorously at advanced ages and also live longer, on average, than wild-type. In contrast, animals engineered with an excessively active version of RAGA-1 show decreases in behavioral activity earlier in life than wild-type and a strikingly shortened lifespan. This offers the possibility that manipulating raga-1 could also produce beneficial effects, such as enhanced vitality, in aging humans.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans.

          A C. elegans neurosecretory signaling system regulates whether animals enter the reproductive life cycle or arrest development at the long-lived dauer diapause stage. daf-2, a key gene in the genetic pathway that mediates this endocrine signaling, encodes an insulin receptor family member. Decreases in DAF-2 signaling induce metabolic and developmental changes, as in mammalian metabolic control by the insulin receptor. Decreased DAF-2 signaling also causes an increase in life-span. Life-span regulation by insulin-like metabolic control is analogous to mammalian longevity enhancement induced by caloric restriction, suggesting a general link between metabolism, diapause, and longevity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway.

            In many species, reducing nutrient intake without causing malnutrition extends lifespan. Like DR (dietary restriction), modulation of genes in the insulin-signaling pathway, known to alter nutrient sensing, has been shown to extend lifespan in various species. In Drosophila, the target of rapamycin (TOR) and the insulin pathways have emerged as major regulators of growth and size. Hence we examined the role of TOR pathway genes in regulating lifespan by using Drosophila. We show that inhibition of TOR signaling pathway by alteration of the expression of genes in this nutrient-sensing pathway, which is conserved from yeast to human, extends lifespan in a manner that may overlap with known effects of dietary restriction on longevity. In Drosophila, TSC1 and TSC2 (tuberous sclerosis complex genes 1 and 2) act together to inhibit TOR (target of rapamycin), which mediates a signaling pathway that couples amino acid availability to S6 kinase, translation initiation, and growth. We find that overexpression of dTsc1, dTsc2, or dominant-negative forms of dTOR or dS6K all cause lifespan extension. Modulation of expression in the fat is sufficient for the lifespan-extension effects. The lifespan extensions are dependent on nutritional condition, suggesting a possible link between the TOR pathway and dietary restriction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients.

              Calorie restriction increases life span in many organisms, including the budding yeast Saccharomyces cerevisiae. From a large-scale analysis of 564 single-gene-deletion strains of yeast, we identified 10 gene deletions that increase replicative life span. Six of these correspond to genes encoding components of the nutrient-responsive TOR and Sch9 pathways. Calorie restriction of tor1D or sch9D cells failed to further increase life span and, like calorie restriction, deletion of either SCH9 or TOR1 increased life span independent of the Sir2 histone deacetylase. We propose that the TOR and Sch9 kinases define a primary conduit through which excess nutrient intake limits longevity in yeast.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                May 2010
                May 2010
                27 May 2010
                : 6
                : 5
                : e1000972
                Affiliations
                [1]Ernest Gallo Clinic and Research Center, Department of Neurology, University of California San Francisco, Emeryville, California, United States of America
                Stanford University Medical Center, United States of America
                Author notes
                [¤]

                Current address: Section of Neurobiology, University of Texas, Austin, Texas, United States of America

                Conceived and designed the experiments: MAS SLM. Performed the experiments: MAS. Analyzed the data: MAS. Contributed reagents/materials/analysis tools: MAS JTPS SC DP. Wrote the paper: MAS SLM.

                Article
                09-PLGE-RA-1742R3
                10.1371/journal.pgen.1000972
                2877737
                20523893
                a8fbad0c-ce9f-43d6-af62-d006e2cdd3c1
                Schreiber et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 7 October 2009
                : 27 April 2010
                Page count
                Pages: 12
                Categories
                Research Article
                Developmental Biology/Aging
                Neuroscience
                Neuroscience/Behavioral Neuroscience

                Genetics
                Genetics

                Comments

                Comment on this article