2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A review on the importance of miRNA-135 in human diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MicroRNA-135 (miR-135) is a microRNA which is involved in the pathoetiology of several neoplastic and non-neoplastic conditions. Both tumor suppressor and oncogenic roles have been reported for this miRNA. Studies in prostate, renal, gallbladder and nasopharyngeal cancers as well as glioma have shown down-regulation of miR-135 in cancerous tissues compared with controls. These studies have also shown the impact of miR-135 down-regulation on enhancement of cell proliferation and aggressive behavior. Meanwhile, miR-135 has been shown to be up-regulated in bladder, oral, colorectal and liver cancers. Studies in breast, gastric, lung and pancreatic cancers as well as head and neck squamous cell carcinoma have reported dual roles for miR-135. Dysregulation of miR-135 has also been noted in various non-neoplastic conditions such as Alzheimer’s disease, atherosclerosis, depression, diabetes, Parkinson, pulmonary arterial hypertension, nephrotic syndrome, endometriosis, epilepsy and allergic conditions. In the current review, we summarize the role of miR-135 in the carcinogenesis as well as development of other disorders.

          Related collections

          Most cited references125

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation

          MicroRNAs (miRNAs) are a class of non-coding RNAs that play important roles in regulating gene expression. The majority of miRNAs are transcribed from DNA sequences into primary miRNAs and processed into precursor miRNAs, and finally mature miRNAs. In most cases, miRNAs interact with the 3′ untranslated region (3′ UTR) of target mRNAs to induce mRNA degradation and translational repression. However, interaction of miRNAs with other regions, including the 5′ UTR, coding sequence, and gene promoters, have also been reported. Under certain conditions, miRNAs can also activate translation or regulate transcription. The interaction of miRNAs with their target genes is dynamic and dependent on many factors, such as subcellular location of miRNAs, the abundancy of miRNAs and target mRNAs, and the affinity of miRNA-mRNA interactions. miRNAs can be secreted into extracellular fluids and transported to target cells via vesicles, such as exosomes, or by binding to proteins, including Argonautes. Extracellular miRNAs function as chemical messengers to mediate cell-cell communication. In this review, we provide an update on canonical and non-canonical miRNA biogenesis pathways and various mechanisms underlying miRNA-mediated gene regulations. We also summarize the current knowledge of the dynamics of miRNA action and of the secretion, transfer, and uptake of extracellular miRNAs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer.

            Inactivation of the adenomatous polyposis coli (APC) gene is a major initiating event in colorectal tumorigenesis. Most of the mutations in APC generate premature stop codons leading to truncated proteins that have lost beta-catenin binding sites. APC-free beta-catenin stimulates the Wnt signaling pathway, leading to active transcription of target genes. In the current study, we describe a novel mechanism for APC regulation. We show that miR-135a&b target the 3' untranslated region of APC, suppress its expression, and induce downstream Wnt pathway activity. Interestingly, we find a considerable up-regulation of miR-135a&b in colorectal adenomas and carcinomas, which significantly correlated with low APC mRNA levels. This genetic interaction is also preserved in full-blown cancer cell lines expressing miR-135a&b, regardless of the mutational status of APC. Thus, our results uncover a miRNA-mediated mechanism for the control of APC expression and Wnt pathway activity, and suggest its contribution to colorectal cancer pathogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage

              MicroRNAs are endogenous single-stranded non-coding small RNA molecules that can be secreted into the circulation and exist stably. They usually exhibit aberrant expression under different physiological and pathological conditions. Recently, differentially expressed circulating microRNAs were focused on as potential biomarkers for cancer screening. We herein review the role of circulating microRNAs for cancer diagnosis, tumor subtype classification, chemo- or radio-resistance monitoring, and outcome prognosis. Moreover, circulating microRNAs still have several issues hindering their reliability for the practical clinical application. Future studies need to elucidate further potential application of circulating microRNAs as specific and sensitive markers for clinical diagnosis or prognosis in cancers.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                06 September 2022
                2022
                : 13
                : 973585
                Affiliations
                [1] 1 Department of Medical Genetics , School of Medicine , Tehran University of Medical Sciences , Tehran, Iran
                [2] 2 Dietary Supplements and Probiotic Research Center , Alborz University of Medical Sciences , Karaj, Iran
                [3] 3 Department of Medical Biotechnology , School of Medicine , Alborz University of Medical Sciences , Karaj, Iran
                [4] 4 Department of Pharmacognosy , College of Pharmacy , Hawler Medical University , Erbil, Iraq
                [5] 5 Center of Research and Strategic Studies , Lebanese French University , Erbil, Iraq
                [6] 6 Department of Medical Genetics , Shahid Beheshti University of Medical Sciences , Tehran, Iran
                Author notes

                Edited by: William C. Cho, QEH, Hong Kong SAR, China

                Reviewed by: Kristina Snipaitiene, Vilnius University, Lithuania

                Igor Jurak, University of Rijeka, Croatia

                *Correspondence: Soudeh Ghafouri-Fard, s.ghafourifard@ 123456sbmu.ac.ir

                This article was submitted to RNA, a section of the journal Frontiers in Genetics

                Article
                973585
                10.3389/fgene.2022.973585
                9486161
                36147505
                aead1e41-0d07-4f93-bbb8-603d53e7d0eb
                Copyright © 2022 Kadkhoda, Eslami, Mahmud Hussen and Ghafouri-Fard.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 20 June 2022
                : 04 August 2022
                Categories
                Genetics
                Review

                Genetics
                mirna,mir-135,cancer,expression,biomarker
                Genetics
                mirna, mir-135, cancer, expression, biomarker

                Comments

                Comment on this article