26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Toward the sequence-based breeding in legumes in the post-genome sequencing era

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Efficiency of breeding programs of legume crops such as chickpea, pigeonpea and groundnut has been considerably improved over the past decade through deployment of modern genomic tools and technologies. For instance, next-generation sequencing technologies have facilitated availability of genome sequence assemblies, re-sequencing of several hundred lines, development of HapMaps, high-density genetic maps, a range of marker genotyping platforms and identification of markers associated with a number of agronomic traits in these legume crops. Although marker-assisted backcrossing and marker-assisted selection approaches have been used to develop superior lines in several cases, it is the need of the hour for continuous population improvement after every breeding cycle to accelerate genetic gain in the breeding programs. In this context, we propose a sequence-based breeding approach which includes use of independent or combination of parental selection, enhancing genetic diversity of breeding programs, forward breeding for early generation selection, and genomic selection using sequencing/genotyping technologies. Also, adoption of speed breeding technology by generating 4–6 generations per year will be contributing to accelerate genetic gain. While we see a huge potential of the sequence-based breeding to revolutionize crop improvement programs in these legumes, we anticipate several challenges especially associated with high-quality and precise phenotyping at affordable costs, data analysis and management related to improving breeding operation efficiency. Finally, integration of improved seed systems and better agronomic packages with the development of improved varieties by using sequence-based breeding will ensure higher genetic gains in farmers’ fields.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations.

          The majority of agronomically important crop traits are quantitative, meaning that they are controlled by multiple genes each with a small effect (quantitative trait loci, QTLs). Mapping and isolation of QTLs is important for efficient crop breeding by marker-assisted selection (MAS) and for a better understanding of the molecular mechanisms underlying the traits. However, since it requires the development and selection of DNA markers for linkage analysis, QTL analysis has been time-consuming and labor-intensive. Here we report the rapid identification of plant QTLs by whole-genome resequencing of DNAs from two populations each composed of 20-50 individuals showing extreme opposite trait values for a given phenotype in a segregating progeny. We propose to name this approach QTL-seq as applied to plant species. We applied QTL-seq to rice recombinant inbred lines and F2 populations and successfully identified QTLs for important agronomic traits, such as partial resistance to the fungal rice blast disease and seedling vigor. Simulation study showed that QTL-seq is able to detect QTLs over wide ranges of experimental variables, and the method can be generally applied in population genomics studies to rapidly identify genomic regions that underwent artificial or natural selective sweeps. © 2013 The Authors The Plant Journal © 2013 Blackwell Publishing Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-throughput genotyping by whole-genome resequencing.

            The next-generation sequencing technology coupled with the growing number of genome sequences opens the opportunity to redesign genotyping strategies for more effective genetic mapping and genome analysis. We have developed a high-throughput method for genotyping recombinant populations utilizing whole-genome resequencing data generated by the Illumina Genome Analyzer. A sliding window approach is designed to collectively examine genome-wide single nucleotide polymorphisms for genotype calling and recombination breakpoint determination. Using this method, we constructed a genetic map for 150 rice recombinant inbred lines with an expected genotype calling accuracy of 99.94% and a resolution of recombination breakpoints within an average of 40 kb. In comparison to the genetic map constructed with 287 PCR-based markers for the rice population, the sequencing-based method was approximately 20x faster in data collection and 35x more precise in recombination breakpoint determination. Using the sequencing-based genetic map, we located a quantitative trait locus of large effect on plant height in a 100-kb region containing the rice "green revolution" gene. Through computer simulation, we demonstrate that the method is robust for different types of mapping populations derived from organisms with variable quality of genome sequences and is feasible for organisms with large genome sizes and low polymorphisms. With continuous advances in sequencing technologies, this genome-based method may replace the conventional marker-based genotyping approach to provide a powerful tool for large-scale gene discovery and for addressing a wide range of biological questions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neglecting legumes has compromised human health and sustainable food production.

              The United Nations declared 2016 as the International Year of Pulses (grain legumes) under the banner 'nutritious seeds for a sustainable future'. A second green revolution is required to ensure food and nutritional security in the face of global climate change. Grain legumes provide an unparalleled solution to this problem because of their inherent capacity for symbiotic atmospheric nitrogen fixation, which provides economically sustainable advantages for farming. In addition, a legume-rich diet has health benefits for humans and livestock alike. However, grain legumes form only a minor part of most current human diets, and legume crops are greatly under-used. Food security and soil fertility could be significantly improved by greater grain legume usage and increased improvement of a range of grain legumes. The current lack of coordinated focus on grain legumes has compromised human health, nutritional security and sustainable food production.
                Bookmark

                Author and article information

                Contributors
                91-40-30713305 , r.k.varshney@cgiar.org
                Journal
                Theor Appl Genet
                Theor. Appl. Genet
                TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0040-5752
                1432-2242
                17 December 2018
                17 December 2018
                2019
                : 132
                : 3
                : 797-816
                Affiliations
                [1 ]ISNI 0000 0000 9323 1772, GRID grid.419337.b, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), ; Hyderabad, 502324 India
                [2 ]ISNI 0000 0001 0304 8438, GRID grid.464590.a, ICAR-Indian Institute of Pulses Research (IIPR), ; Kanpur, 208024 India
                [3 ]ISNI 0000 0000 9323 1772, GRID grid.419337.b, International Rice Research Institute (IRRI), IRRI South Asia Hub, , ICRISAT, ; Hyderabad, 502324 India
                Author notes

                Communicated by Lee Hickey.

                Author information
                http://orcid.org/0000-0002-4562-9131
                http://orcid.org/0000-0002-4101-6530
                http://orcid.org/0000-0003-4569-8900
                http://orcid.org/0000-0002-1560-1648
                http://orcid.org/0000-0003-2851-6837
                http://orcid.org/0000-0002-9405-3570
                Article
                3252
                10.1007/s00122-018-3252-x
                6439141
                30560464
                afda7959-8c89-46a7-9abe-bcd68374e7d1
                © The Author(s) 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 28 September 2018
                : 27 November 2018
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000865, Bill and Melinda Gates Foundation;
                Award ID: OPP1114827
                Award Recipient :
                Categories
                Review Article
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2019

                Genetics
                Genetics

                Comments

                Comment on this article