37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Missing-in-metastasis and IRSp53 deform PI(4,5)P 2-rich membranes by an inverse BAR domain–like mechanism

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The actin cytoskeleton plays a fundamental role in various motile and morphogenetic processes involving membrane dynamics. We show that actin-binding proteins MIM (missing-in-metastasis) and IRSp53 directly bind PI(4,5)P 2-rich membranes and deform them into tubular structures. This activity resides in the N-terminal IRSp53/MIM domain (IMD) of these proteins, which is structurally related to membrane-tubulating BAR (Bin/amphiphysin/Rvs) domains. We found that because of a difference in the geometry of the PI(4,5)P 2-binding site, IMDs induce a membrane curvature opposite that of BAR domains and deform membranes by binding to the interior of the tubule. This explains why IMD proteins induce plasma membrane protrusions rather than invaginations. We also provide evidence that the membrane-deforming activity of IMDs, instead of the previously proposed F-actin–bundling or GTPase-binding activities, is critical for the induction of the filopodia/microspikes in cultured mammalian cells. Together, these data reveal that interplay between actin dynamics and a novel membrane-deformation activity promotes cell motility and morphogenesis.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Cellular motility driven by assembly and disassembly of actin filaments.

          Motile cells extend a leading edge by assembling a branched network of actin filaments that produces physical force as the polymers grow beneath the plasma membrane. A core set of proteins including actin, Arp2/3 complex, profilin, capping protein, and ADF/cofilin can reconstitute the process in vitro, and mathematical models of the constituent reactions predict the rate of motion. Signaling pathways converging on WASp/Scar proteins regulate the activity of Arp2/3 complex, which mediates the initiation of new filaments as branches on preexisting filaments. After a brief spurt of growth, capping protein terminates the elongation of the filaments. After filaments have aged by hydrolysis of their bound ATP and dissociation of the gamma phosphate, ADF/cofilin proteins promote debranching and depolymerization. Profilin catalyzes the exchange of ADP for ATP, refilling the pool of ATP-actin monomers bound to profilin, ready for elongation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            BAR domains as sensors of membrane curvature: the amphiphysin BAR structure.

            The BAR (Bin/amphiphysin/Rvs) domain is the most conserved feature in amphiphysins from yeast to human and is also found in endophilins and nadrins. We solved the structure of the Drosophila amphiphysin BAR domain. It is a crescent-shaped dimer that binds preferentially to highly curved negatively charged membranes. With its N-terminal amphipathic helix and BAR domain (N-BAR), amphiphysin can drive membrane curvature in vitro and in vivo. The structure is similar to that of arfaptin2, which we find also binds and tubulates membranes. From this, we predict that BAR domains are in many protein families, including sorting nexins, centaurins, and oligophrenins. The universal and minimal BAR domain is a dimerization, membrane-binding, and curvature-sensing module.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stress fibers are generated by two distinct actin assembly mechanisms in motile cells

              Stress fibers play a central role in adhesion, motility, and morphogenesis of eukaryotic cells, but the mechanism of how these and other contractile actomyosin structures are generated is not known. By analyzing stress fiber assembly pathways using live cell microscopy, we revealed that these structures are generated by two distinct mechanisms. Dorsal stress fibers, which are connected to the substrate via a focal adhesion at one end, are assembled through formin (mDia1/DRF1)–driven actin polymerization at focal adhesions. In contrast, transverse arcs, which are not directly anchored to substrate, are generated by endwise annealing of myosin bundles and Arp2/3-nucleated actin bundles at the lamella. Remarkably, dorsal stress fibers and transverse arcs can be converted to ventral stress fibers anchored to focal adhesions at both ends. Fluorescence recovery after photobleaching analysis revealed that actin filament cross-linking in stress fibers is highly dynamic, suggesting that the rapid association–dissociation kinetics of cross-linkers may be essential for the formation and contractility of stress fibers. Based on these data, we propose a general model for assembly and maintenance of contractile actin structures in cells.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                26 March 2007
                : 176
                : 7
                : 953-964
                Affiliations
                Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
                Author notes

                Correspondence to Pekka Lappalainen: pekka.lappalainen@ 123456helsinki.fi

                Article
                200609176
                10.1083/jcb.200609176
                2064081
                17371834
                b66e8789-eedd-4c78-a32e-28784ae1cca1
                Copyright © 2007, The Rockefeller University Press
                History
                : 28 September 2006
                : 9 February 2007
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article