72
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Proteomic analysis of the secretome of Leishmania donovani

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Analysis of Leishmania-conditioned medium resulted in the identification of 151 proteins apparently secreted by the parasitic protozoan Leishmania donovani and suggested a vesicle-based secretion system.

          Abstract

          Background

          Leishmania and other intracellular pathogens have evolved strategies that support invasion and persistence within host target cells. In some cases the underlying mechanisms involve the export of virulence factors into the host cell cytosol. Previous work from our laboratory identified one such candidate leishmania effector, namely elongation factor-1α, to be present in conditioned medium of infectious leishmania as well as within macrophage cytosol after infection. To investigate secretion of potential effectors more broadly, we used quantitative mass spectrometry to analyze the protein content of conditioned medium collected from cultures of stationary-phase promastigotes of Leishmania donovani, an agent of visceral leishmaniasis.

          Results

          Analysis of leishmania conditioned medium resulted in the identification of 151 proteins apparently secreted by L. donovani. Ratios reflecting the relative amounts of each leishmania protein secreted, as compared to that remaining cell associated, revealed a hierarchy of protein secretion, with some proteins secreted to a greater extent than others. Comparison with an in silico approach defining proteins potentially exported along the classic eukaryotic secretion pathway suggested that few leishmania proteins are targeted for export using a classic eukaryotic amino-terminal secretion signal peptide. Unexpectedly, a large majority of known eukaryotic exosomal proteins was detected in leishmania conditioned medium, suggesting a vesicle-based secretion system.

          Conclusion

          This analysis shows that protein secretion by L. donovani is a heterogeneous process that is unlikely to be determined by a classical amino-terminal secretion signal. As an alternative, L. donovani appears to use multiple nonclassical secretion pathways, including the release of exosome-like microvesicles.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics.

            Quantitative proteomics has traditionally been performed by two-dimensional gel electrophoresis, but recently, mass spectrometric methods based on stable isotope quantitation have shown great promise for the simultaneous and automated identification and quantitation of complex protein mixtures. Here we describe a method, termed SILAC, for stable isotope labeling by amino acids in cell culture, for the in vivo incorporation of specific amino acids into all mammalian proteins. Mammalian cell lines are grown in media lacking a standard essential amino acid but supplemented with a non-radioactive, isotopically labeled form of that amino acid, in this case deuterated leucine (Leu-d3). We find that growth of cells maintained in these media is no different from growth in normal media as evidenced by cell morphology, doubling time, and ability to differentiate. Complete incorporation of Leu-d3 occurred after five doublings in the cell lines and proteins studied. Protein populations from experimental and control samples are mixed directly after harvesting, and mass spectrometric identification is straightforward as every leucine-containing peptide incorporates either all normal leucine or all Leu-d3. We have applied this technique to the relative quantitation of changes in protein expression during the process of muscle cell differentiation. Proteins that were found to be up-regulated during this process include glyceraldehyde-3-phosphate dehydrogenase, fibronectin, and pyruvate kinase M2. SILAC is a simple, inexpensive, and accurate procedure that can be used as a quantitative proteomic approach in any cell culture system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Visceral leishmaniasis: what are the needs for diagnosis, treatment and control?

              Visceral leishmaniasis (VL) is a systemic protozoan disease that is transmitted by phlebotomine sandflies. Poor and neglected populations in East Africa and the Indian sub-continent are particularly affected. Early and accurate diagnosis and treatment remain key components of VL control. In addition to improved diagnostic tests, accurate and simple tests are needed to identify treatment failures. Miltefosine, paromomycin and liposomal amphotericin B are gradually replacing pentavalent antimonials and conventional amphotericin B as the preferred treatments in some regions, but in other areas these drugs are still being evaluated in both mono- and combination therapies. New diagnostic tools and new treatment strategies will only have an impact if they are made widely available to patients.
                Bookmark

                Author and article information

                Journal
                Genome Biol
                Genome Biology
                BioMed Central
                1465-6906
                1465-6914
                2008
                18 February 2008
                : 9
                : 2
                : R35
                Affiliations
                [1 ]Department of Medicine (Division of Infectious Diseases), University of British Columbia, Faculty of Medicine, 2733 Heather St, Vancouver, British Columbia, V5Z 3J5, Canada
                [2 ]Vancouver Coastal Health Research Institute, 2647 Willow St. Vancouver, British Columbia, V5Z 3P1, Canada
                [3 ]Department Microbiology and Immunology, University of British Columbia, Faculty of Science, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada
                [4 ]Canada's Michael Smith Genome Sciences Centre, 570 West 7th Ave - Suite 100, Vancouver, British Columbia, V5Z 4S6, Canada
                [5 ]Bioinformatics Graduate Program, University of British Columbia, 100-570 West 7th Avenue, Vancouver, British Columbia, V5Z 4S6 Canada
                [6 ]Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, National Institutes of Health, 4 Center Drive, Bethesda, Maryland, 20892, USA
                [7 ]Department of Biochemistry and Molecular Biology, University of British Columbia, Faculty of Science, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada
                Article
                gb-2008-9-2-r35
                10.1186/gb-2008-9-2-r35
                2374696
                18282296
                b9bb4aa6-a584-4bdd-a99f-0e98a26d10c9
                Copyright © 2008 Silverman et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 November 2007
                : 22 January 2008
                : 18 February 2008
                Categories
                Research

                Genetics
                Genetics

                Comments

                Comment on this article