75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comprehensive Methylome Characterization of Mycoplasma genitalium and Mycoplasma pneumoniae at Single-Base Resolution

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the bacterial world, methylation is most commonly associated with restriction-modification systems that provide a defense mechanism against invading foreign genomes. In addition, it is known that methylation plays functionally important roles, including timing of DNA replication, chromosome partitioning, DNA repair, and regulation of gene expression. However, full DNA methylome analyses are scarce due to a lack of a simple methodology for rapid and sensitive detection of common epigenetic marks (ie N 6-methyladenine (6 mA) and N 4-methylcytosine (4 mC)), in these organisms. Here, we use Single-Molecule Real-Time (SMRT) sequencing to determine the methylomes of two related human pathogen species, Mycoplasma genitalium G-37 and Mycoplasma pneumoniae M129, with single-base resolution. Our analysis identified two new methylation motifs not previously described in bacteria: a widespread 6 mA methylation motif common to both bacteria ( 5′-CT AT-3′ ), as well as a more complex Type I m6A sequence motif in M. pneumoniae ( 5′-G AN 7TAY-3′/3′-CTN 7 ATR-5′ ). We identify the methyltransferase responsible for the common motif and suggest the one involved in M. pneumoniae only. Analysis of the distribution of methylation sites across the genome of M. pneumoniae suggests a potential role for methylation in regulating the cell cycle, as well as in regulation of gene expression. To our knowledge, this is one of the first direct methylome profiling studies with single-base resolution from a bacterial organism.

          Author Summary

          DNA methylation in bacteria plays important roles in cell division, DNA repair, regulation of gene expression, and pathogenesis. Here, we use a novel sequencing technique, Single-Molecule Real-Time (SMRT) sequencing, to determine the methylomes of two related human pathogen species, Mycoplasma genitalium G-37 and Mycoplasma pneumoniae M129. Our analysis identified two novel methylation motifs, one of them present uniquely in M. pneumoniae and the other common to both bacteria. We also identify the methyltransferase responsible for the common methylation motif and suggest the one associated with the M. pneumoniae unique motif. Functional analysis of the data suggests a potential role for methylation in regulating the cell cycle of M. pneumoniae, as well as in regulation of gene expression. To our knowledge, this is one of the first genome-wide approaches to study the biological role of methylation in a bacterial organism.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning.

          Cytosine DNA methylation is important in regulating gene expression and in silencing transposons and other repetitive sequences. Recent genomic studies in Arabidopsis thaliana have revealed that many endogenous genes are methylated either within their promoters or within their transcribed regions, and that gene methylation is highly correlated with transcription levels. However, plants have different types of methylation controlled by different genetic pathways, and detailed information on the methylation status of each cytosine in any given genome is lacking. To this end, we generated a map at single-base-pair resolution of methylated cytosines for Arabidopsis, by combining bisulphite treatment of genomic DNA with ultra-high-throughput sequencing using the Illumina 1G Genome Analyser and Solexa sequencing technology. This approach, termed BS-Seq, unlike previous microarray-based methods, allows one to sensitively measure cytosine methylation on a genome-wide scale within specific sequence contexts. Here we describe methylation on previously inaccessible components of the genome and analyse the DNA methylation sequence composition and distribution. We also describe the effect of various DNA methylation mutants on genome-wide methylation patterns, and demonstrate that our newly developed library construction and computational methods can be applied to large genomes such as that of mouse.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA.

            Methylation of mammalian DNA can lead to repression of transcription and alteration of chromatin structure. Recent evidence suggests that both effects are the result of an interaction between the methylated sites and methyl-CpG-binding proteins (MeCPs). MeCP1 has previously been detected in crude nuclear extracts. Here we report the identification, purification, and cDNA cloning of a novel MeCP called MeCP2. Unlike MeCP1, the new protein is able to bind to DNA that contains a single methyl-CpG pair. By staining with an antibody, we show that the distribution of MeCP2 along the chromosomes parallels that of methyl-CpG. In mouse, for example, MeCP2 is concentrated in pericentromeric heterochromatin, which contains a large fraction (about 40%) of all genomic 5-methylcytosine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              REBASE--a database for DNA restriction and modification: enzymes, genes and genomes.

              REBASE is a comprehensive database of information about restriction enzymes, DNA methyltransferases and related proteins involved in the biological process of restriction-modification (R-M). It contains fully referenced information about recognition and cleavage sites, isoschizomers, neoschizomers, commercial availability, methylation sensitivity, crystal and sequence data. Experimentally characterized homing endonucleases are also included. The fastest growing segment of REBASE contains the putative R-M systems found in the sequence databases. Comprehensive descriptions of the R-M content of all fully sequenced genomes are available including summary schematics. The contents of REBASE may be browsed from the web (http://rebase.neb.com) and selected compilations can be downloaded by ftp (ftp.neb.com). Additionally, monthly updates can be requested via email.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                January 2013
                January 2013
                3 January 2013
                : 9
                : 1
                : e1003191
                Affiliations
                [1 ]EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain
                [2 ]Universitat Pompeu Fabra (UPF), Barcelona, Spain
                [3 ]Pacific Biosciences, Menlo Park, California, United States of America
                [4 ]Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
                [5 ]Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
                Progentech, United States of America
                Author notes

                KL, TAC, KS, SWT, and JK are full-time employees at PacificBiosciences, a company commercializing single-molecule, real-time nucleic acid sequencing technologies.

                Conceived and designed the experiments: ML-S LS KL JK. Performed the experiments: ML-S KS TAC. Analyzed the data: KL ML-S VL-R LS GF ES SWT JK JD. Contributed reagents/materials/analysis tools: KL JK ML-S LS. Wrote the paper: ML-S LS KL TAC SWT JK.

                Article
                PGENETICS-D-12-02305
                10.1371/journal.pgen.1003191
                3536716
                23300489
                c50dcb62-d7d4-4972-bfe6-6e9b4c5159cc
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 September 2012
                : 8 November 2012
                Page count
                Pages: 12
                Funding
                This work was supported in part by National Institutes of Health grants 1RC2HG005618-01 (NHGRI) and 1RC2GM092602-01 (NIGMS). The LS group was supported by the European Research Council (ERC) advanced grant, the Fundación Marcelino Botin, and the Spanish Ministry of Research and Innovation to the ICREA researcher LS. VL-R was funded by the Fundación La Caixa. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Genetics
                Epigenetics
                DNA modification
                Gene Expression
                DNA modification
                DNA transcription
                Genomics
                Chromosome Biology
                Comparative Genomics
                Genome Sequencing
                Microbiology
                Microbial Pathogens
                Systems Biology

                Genetics
                Genetics

                Comments

                Comment on this article