21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cornelia de Lange syndrome: from molecular diagnosis to therapeutic approach

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cornelia de Lange syndrome (CdLS) is a severe genetic disorder characterised by multisystemic malformations. CdLS is due to pathogenetic variants in NIPBL, SMC1A, SMC3, RAD21 and HDAC8 genes which belong to the cohesin pathway. Cohesin plays a pivotal role in chromatid cohesion, gene expression, and DNA repair. In this review, we will discuss how perturbations in those biological processes contribute to CdLS phenotype and will emphasise the state-of-art of CdLS therapeutic approaches.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Cohesin mediates transcriptional insulation by CCCTC-binding factor.

          Cohesin complexes mediate sister-chromatid cohesion in dividing cells but may also contribute to gene regulation in postmitotic cells. How cohesin regulates gene expression is not known. Here we describe cohesin-binding sites in the human genome and show that most of these are associated with the CCCTC-binding factor (CTCF), a zinc-finger protein required for transcriptional insulation. CTCF is dispensable for cohesin loading onto DNA, but is needed to enrich cohesin at specific binding sites. Cohesin enables CTCF to insulate promoters from distant enhancers and controls transcription at the H19/IGF2 (insulin-like growth factor 2) locus. This role of cohesin seems to be independent of its role in cohesion. We propose that cohesin functions as a transcriptional insulator, and speculate that subtle deficiencies in this function contribute to 'cohesinopathies' such as Cornelia de Lange syndrome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Living on a break: cellular senescence as a DNA-damage response.

            Cellular senescence is associated with ageing and cancer in vivo and has a proven tumour-suppressive function. Common to both ageing and cancer is the generation of DNA damage and the engagement of the DNA-damage response pathways. In this Review, the diverse mechanisms that lead to DNA-damage generation and the activation of DNA-damage-response signalling pathways are discussed, together with the evidence for their contribution to the establishment and maintenance of cellular senescence in the context of organismal ageing and cancer development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cohesin: its roles and mechanisms.

              The cohesin complex is a major constituent of interphase and mitotic chromosomes. Apart from its role in mediating sister chromatid cohesion, it is also important for DNA double-strand-break repair and transcriptional control. The functions of cohesin are regulated by phosphorylation, acetylation, ATP hydrolysis, and site-specific proteolysis. Recent evidence suggests that cohesin acts as a novel topological device that traps chromosomal DNA within a large tripartite ring formed by its core subunits.
                Bookmark

                Author and article information

                Journal
                J Med Genet
                J. Med. Genet
                jmedgenet
                jmg
                Journal of Medical Genetics
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                0022-2593
                1468-6244
                May 2020
                8 November 2019
                : 57
                : 5
                : 289-295
                Affiliations
                [1] departmentIstituto di Ricerca Genetica e Biomedica , Consiglio Nazionale delle Ricerche , Pisa, Italy
                Author notes
                [Correspondence to ] Dr Antonio Musio, Istituto di Ricerca Genetica e Biomedica, Pisa 56124, Italy; antonio.musio@ 123456irgb.cnr.it

                PS and MMP are joint first authors.

                Author information
                http://orcid.org/0000-0001-7701-6543
                Article
                jmedgenet-2019-106277
                10.1136/jmedgenet-2019-106277
                7231464
                31704779
                cce9fa47-b3e1-44d3-80f5-98265466e8ac
                © Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 08 May 2019
                : 08 August 2019
                : 02 October 2019
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100007368, Fondazione Pisa;
                Categories
                Developmental Defects
                1506
                Review
                Custom metadata
                unlocked

                Genetics
                cohesin,cornelia de lange syndrome,gene dysregulation,genome instability,therapeutic approaches

                Comments

                Comment on this article