18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding RNA

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nuclear receptors regulate gene expression in response to environmental cues, but the molecular events governing the cell-type specificity of nuclear receptors remain poorly understood. Here we outline a role for a non-coding RNA in modulating the cell type-specific actions of LXRs, sterol-activated nuclear receptors that regulate the expression of genes involved in cholesterol homeostasis and that have been causally linked to the pathogenesis of atherosclerosis. We identify the lncRNA MeXis as an amplifier of LXR-dependent transcription of the critical cholesterol efflux gene Abca1. Mice lacking the MeXis gene show reduced Abca1 expression in a tissue-selective manner. Furthermore, loss of MeXis in mouse bone marrow cells alters chromosome architecture at the Abca1 locus, impairs cellular responses to cholesterol overload, and accelerates the development of atherosclerosis. Mechanistic studies reveal that MeXis interacts with and guides promoter binding of the transcriptional coactivator DDX17. The identification of MeXis as a lncRNA modulator of LXR-dependent gene expression expands our understanding of the mechanisms underlying cell-type selective actions of nuclear receptors in physiology and disease.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long noncoding RNA as modular scaffold of histone modification complexes.

            Long intergenic noncoding RNAs (lincRNAs) regulate chromatin states and epigenetic inheritance. Here, we show that the lincRNA HOTAIR serves as a scaffold for at least two distinct histone modification complexes. A 5' domain of HOTAIR binds polycomb repressive complex 2 (PRC2), whereas a 3' domain of HOTAIR binds the LSD1/CoREST/REST complex. The ability to tether two distinct complexes enables RNA-mediated assembly of PRC2 and LSD1 and coordinates targeting of PRC2 and LSD1 to chromatin for coupled histone H3 lysine 27 methylation and lysine 4 demethylation. Our results suggest that lincRNAs may serve as scaffolds by providing binding surfaces to assemble select histone modification enzymes, thereby specifying the pattern of histone modifications on target genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inflammation in atherosclerosis: from pathophysiology to practice.

              Until recently, most envisaged atherosclerosis as a bland arterial collection of cholesterol, complicated by smooth muscle cell accumulation. According to that concept, endothelial denuding injury led to platelet aggregation and release of platelet factors which would trigger the proliferation of smooth muscle cells in the arterial intima. These cells would then elaborate an extracellular matrix that would entrap lipoproteins, forming the nidus of the atherosclerotic plaque. Beyond the vascular smooth muscle cells long recognized in atherosclerotic lesions, subsequent investigations identified immune cells and mediators at work in atheromata, implicating inflammation in this disease. Multiple independent pathways of evidence now pinpoint inflammation as a key regulatory process that links multiple risk factors for atherosclerosis and its complications with altered arterial biology. Knowledge has burgeoned regarding the operation of both innate and adaptive arms of immunity in atherogenesis, their interplay, and the balance of stimulatory and inhibitory pathways that regulate their participation in atheroma formation and complication. This revolution in our thinking about the pathophysiology of atherosclerosis has now begun to provide clinical insight and practical tools that may aid patient management. This review provides an update of the role of inflammation in atherogenesis and highlights how translation of these advances in basic science promises to change clinical practice.
                Bookmark

                Author and article information

                Journal
                9502015
                8791
                Nat Med
                Nat. Med.
                Nature medicine
                1078-8956
                1546-170X
                5 January 2018
                12 February 2018
                March 2018
                12 August 2018
                : 24
                : 3
                : 304-312
                Affiliations
                [1 ]Department of Pathology and Laboratory Medicine, Molecular Biology Institute, University of California, Los Angeles, CA 90095
                [2 ]Department of Medicine, Division of Cardiology, University of California, Los Angeles, CA 90095
                [3 ]Department of Microbiology, Immunology, and Molecular Genetics, and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
                [4 ]Departement of Human Genetics, University of California, Los Angeles, CA 90095
                [5 ]Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
                [6 ]Sanford-Burnham-Prebys Medical Discovery Institute at Lake Nona; Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Orlando, FL
                [7 ]Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute, University of California, Los Angeles, California 90095
                [8 ]Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-Universidad Autónoma de Madrid, Unidad de Biomedicina-Universidad de Las Palmas de Gran Canaria (Unidad asociada al CSIC) and Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la ULPGC, Las Palmas de Gran Canaria, Spain
                Author notes
                Article
                NIHMS929904
                10.1038/nm.4479
                5839972
                29431742
                d170d84b-b4bc-4c5f-a67e-72fa83e98b24

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article