Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Does co-transcriptional regulation of alternative splicing mediate plant stress responses?

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plants display exquisite control over gene expression to elicit appropriate responses under normal and stress conditions. Alternative splicing (AS) of pre-mRNAs, a process that generates two or more transcripts from multi-exon genes, adds another layer of regulation to fine-tune condition-specific gene expression in animals and plants. However, exactly how plants control splice isoform ratios and the timing of this regulation in response to environmental signals remains elusive. In mammals, recent evidence indicate that epigenetic and epitranscriptome changes, such as DNA methylation, chromatin modifications and RNA methylation, regulate RNA polymerase II processivity, co-transcriptional splicing, and stability and translation efficiency of splice isoforms. In plants, the role of epigenetic modifications in regulating transcription rate and mRNA abundance under stress is beginning to emerge. However, the mechanisms by which epigenetic and epitranscriptomic modifications regulate AS and translation efficiency require further research. Dynamic changes in the chromatin landscape in response to stress may provide a scaffold around which gene expression, AS and translation are orchestrated. Finally, we discuss CRISPR/Cas-based strategies for engineering chromatin architecture to manipulate AS patterns (or splice isoforms levels) to obtain insight into the epigenetic regulation of AS.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning.

          Cytosine DNA methylation is important in regulating gene expression and in silencing transposons and other repetitive sequences. Recent genomic studies in Arabidopsis thaliana have revealed that many endogenous genes are methylated either within their promoters or within their transcribed regions, and that gene methylation is highly correlated with transcription levels. However, plants have different types of methylation controlled by different genetic pathways, and detailed information on the methylation status of each cytosine in any given genome is lacking. To this end, we generated a map at single-base-pair resolution of methylated cytosines for Arabidopsis, by combining bisulphite treatment of genomic DNA with ultra-high-throughput sequencing using the Illumina 1G Genome Analyser and Solexa sequencing technology. This approach, termed BS-Seq, unlike previous microarray-based methods, allows one to sensitively measure cytosine methylation on a genome-wide scale within specific sequence contexts. Here we describe methylation on previously inaccessible components of the genome and analyse the DNA methylation sequence composition and distribution. We also describe the effect of various DNA methylation mutants on genome-wide methylation patterns, and demonstrate that our newly developed library construction and computational methods can be applied to large genomes such as that of mouse.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Alternative splicing: a pivotal step between eukaryotic transcription and translation.

            Alternative splicing was discovered simultaneously with splicing over three decades ago. Since then, an enormous body of evidence has demonstrated the prevalence of alternative splicing in multicellular eukaryotes, its key roles in determining tissue- and species-specific differentiation patterns, the multiple post- and co-transcriptional regulatory mechanisms that control it, and its causal role in hereditary disease and cancer. The emerging evidence places alternative splicing in a central position in the flow of eukaryotic genetic information, between transcription and translation, in that it can respond not only to various signalling pathways that target the splicing machinery but also to transcription factors and chromatin structure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nascent transcript sequencing visualizes transcription at nucleotide resolution.

              Recent studies of transcription have revealed a level of complexity not previously appreciated even a few years ago, both in the intricate use of post-initiation control and the mass production of rapidly degraded transcripts. Dissection of these pathways requires strategies for precisely following transcripts as they are being produced. Here we present an approach (native elongating transcript sequencing, NET-seq), based on deep sequencing of 3' ends of nascent transcripts associated with RNA polymerase, to monitor transcription at nucleotide resolution. Application of NET-seq in Saccharomyces cerevisiae reveals that although promoters are generally capable of divergent transcription, the Rpd3S deacetylation complex enforces strong directionality to most promoters by suppressing antisense transcript initiation. Our studies also reveal pervasive polymerase pausing and backtracking throughout the body of transcripts. Average pause density shows prominent peaks at each of the first four nucleosomes, with the peak location occurring in good agreement with in vitro biophysical measurements. Thus, nucleosome-induced pausing represents a major barrier to transcriptional elongation in vivo.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                08 April 2019
                22 February 2019
                22 February 2019
                : 47
                : 6
                : 2716-2726
                Affiliations
                [1 ]School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
                [2 ]Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
                [3 ]Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences - BOKU, Muthgasse 18, 1190 Vienna, Austria
                Author notes
                To whom correspondence should be addressed. Tel: +44 1227 782511; Fax: +44 1227 782511; Email: naeem.syed@ 123456canterbury.ac.uk
                Author information
                http://orcid.org/0000-0003-4702-7625
                http://orcid.org/0000-0001-6584-6179
                http://orcid.org/0000-0003-4043-9969
                Article
                gkz121
                10.1093/nar/gkz121
                6451118
                30793202
                e192df14-35cb-4dbe-8f8d-254edda213ee
                © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 February 2019
                : 11 February 2019
                : 09 November 2018
                Page count
                Pages: 11
                Funding
                Funded by: Leverhulme Trust 10.13039/501100000275
                Award ID: RPG-2016-014
                Funded by: Biological and Environmental Research 10.13039/100006206
                Award ID: DE-SC0010733
                Funded by: Austrian Science Fund 10.13039/501100002428
                Award ID: P26333
                Categories
                Survey and Summary

                Genetics
                Genetics

                Comments

                Comment on this article