73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dynamic Association of NUP98 with the Human Genome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Faithful execution of developmental gene expression programs occurs at multiple levels and involves many different components such as transcription factors, histone-modification enzymes, and mRNA processing proteins. Recent evidence suggests that nucleoporins, well known components that control nucleo-cytoplasmic trafficking, have wide-ranging functions in developmental gene regulation that potentially extend beyond their role in nuclear transport. Whether the unexpected role of nuclear pore proteins in transcription regulation, which initially has been described in fungi and flies, also applies to human cells is unknown. Here we show at a genome-wide level that the nuclear pore protein NUP98 associates with developmentally regulated genes active during human embryonic stem cell differentiation. Overexpression of a dominant negative fragment of NUP98 levels decreases expression levels of NUP98-bound genes. In addition, we identify two modes of developmental gene regulation by NUP98 that are differentiated by the spatial localization of NUP98 target genes. Genes in the initial stage of developmental induction can associate with NUP98 that is embedded in the nuclear pores at the nuclear periphery. Alternatively, genes that are highly induced can interact with NUP98 in the nuclear interior, away from the nuclear pores. This work demonstrates for the first time that NUP98 dynamically associates with the human genome during differentiation, revealing a role of a nuclear pore protein in regulating developmental gene expression programs.

          Author Summary

          Development of multicellular organisms such as humans requires appropriate activation of gene expression programs according to stages of differentiation. Many proteins that directly regulate this process have been identified, including histone-modifying enzymes and transcription factors. It is not clear whether nuclear pore proteins, proteins that form the only channels in the nuclear envelope that mediate nuclear transport, regulate developmental gene regulation in higher organisms such as humans. Here we show that one nuclear pore protein has a role in gene regulation during human cell differentiation, providing insight into the development-related and transport-independent function of nuclear pore proteins. We have found that the nuclear pore protein interacts with the human genome in a dynamic manner that is tightly linked to the developmental stage. In addition, manipulating the functional levels of the nuclear pore protein can disrupt expression of the developmental genes it associates with. Our results suggest that the nuclear pore protein functionally interacts with the genome during cell differentiation, uncovering an additional layer of developmental gene regulation in humans.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          A protein interaction network for pluripotency of embryonic stem cells.

          Embryonic stem (ES) cells are pluripotent and of therapeutic potential in regenerative medicine. Understanding pluripotency at the molecular level should illuminate fundamental properties of stem cells and the process of cellular reprogramming. Through cell fusion the embryonic cell phenotype can be imposed on somatic cells, a process promoted by the homeodomain protein Nanog, which is central to the maintenance of ES cell pluripotency. Nanog is thought to function in concert with other factors such as Oct4 (ref. 8) and Sox2 (ref. 9) to establish ES cell identity. Here we explore the protein network in which Nanog operates in mouse ES cells. Using affinity purification of Nanog under native conditions followed by mass spectrometry, we have identified physically associated proteins. In an iterative fashion we also identified partners of several Nanog-associated proteins (including Oct4), validated the functional relevance of selected newly identified components and constructed a protein interaction network. The network is highly enriched for nuclear factors that are individually critical for maintenance of the ES cell state and co-regulated on differentiation. The network is linked to multiple co-repressor pathways and is composed of numerous proteins whose encoding genes are putative direct transcriptional targets of its members. This tight protein network seems to function as a cellular module dedicated to pluripotency.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells.

            Differentiation of embryonic stem (ES) cells from a pluripotent to a committed state involves global changes in genome expression patterns. Gene activity is critically determined by chromatin structure and interactions of chromatin binding proteins. Here, we show that major architectural chromatin proteins are hyperdynamic and bind loosely to chromatin in ES cells. Upon differentiation, the hyperdynamic proteins become immobilized on chromatin. Hyperdynamic binding is a property of pluripotent cells, but not of undifferentiated cells that are already lineage committed. ES cells lacking the nucleosome assembly factor HirA exhibit elevated levels of unbound histones, and formation of embryoid bodies is accelerated. In contrast, ES cells, in which the dynamic exchange of H1 is restricted, display differentiation arrest. We suggest that hyperdynamic binding of structural chromatin proteins is a functionally important hallmark of pluripotent ES cells that contributes to the maintenance of plasticity in undifferentiated ES cells and to establishing higher-order chromatin structure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global transcription in pluripotent embryonic stem cells.

              The molecular mechanisms underlying pluripotency and lineage specification from embryonic stem cells (ESCs) are largely unclear. Differentiation pathways may be determined by the targeted activation of lineage-specific genes or by selective silencing of genome regions. Here we show that the ESC genome is transcriptionally globally hyperactive and undergoes large-scale silencing as cells differentiate. Normally silent repeat regions are active in ESCs, and tissue-specific genes are sporadically expressed at low levels. Whole-genome tiling arrays demonstrate widespread transcription in coding and noncoding regions in ESCs, whereas the transcriptional landscape becomes more discrete as differentiation proceeds. The transcriptional hyperactivity in ESCs is accompanied by disproportionate expression of chromatin-remodeling genes and the general transcription machinery. We propose that global transcription is a hallmark of pluripotent ESCs, contributing to their plasticity, and that lineage specification is driven by reduction of the transcribed portion of the genome.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                February 2013
                February 2013
                28 February 2013
                : 9
                : 2
                : e1003308
                Affiliations
                [1 ]Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory, La Jolla, California, United States of America
                [2 ]Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California, United States of America
                Northwestern University, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: YL MWH FHG. Performed the experiments: YL TMF MCM. Analyzed the data: YL TMF MCM. Contributed reagents/materials/analysis tools: MCM FHG. Wrote the paper: YL MWH.

                Article
                PGENETICS-D-12-01273
                10.1371/journal.pgen.1003308
                3585015
                23468646
                ed236132-89d2-491e-94fe-5b7feb4afdf1
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 24 May 2012
                : 12 December 2012
                Page count
                Pages: 14
                Funding
                Funding source for the project: NIH RO1 GM098749. MWH is supported by NIH GM098749 and the American Cancer Society. FHG and MCM are supported by the G. Harold and Leila Y. Mathers Charitable Foundation, Annette Merle-Smith, Leona M. and Harry B. Helmsley Charitable Trust, the JPB Foundation, and the California Institute for Regenerative Medicine (CIRM, grant# TR2-01778). The project described was supported by Award Number P30CA014195 from the National Cancer Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology

                Genetics
                Genetics

                Comments

                Comment on this article