Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Optical coherence tomography angiography (OCTA) is a noninvasive method of 3D imaging of the retinal and choroidal circulations. However, vascular depth discrimination is limited by superficial vessels projecting flow signal artifact onto deeper layers. The projection-resolved (PR) OCTA algorithm improves depth resolution by removing projection artifact while retaining in-situ flow signal from real blood vessels in deeper layers. This novel technology allowed us to study the normal retinal vasculature in vivo with better depth resolution than previously possible. Our investigation in normal human volunteers revealed the presence of 2 to 4 distinct vascular plexuses in the retina, depending on location relative to the optic disc and fovea. The vascular pattern in these retinal plexuses and interconnecting layers are consistent with previous histologic studies. Based on these data, we propose an improved system of nomenclature and segmentation boundaries for detailed 3-dimensional retinal vascular anatomy by OCTA. This could serve as a basis for future investigation of both normal retinal anatomy, as well as vascular malformations, nonperfusion, and neovascularization.

      Related collections

      Most cited references 34

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Split-spectrum amplitude-decorrelation angiography with optical coherence tomography

      Amplitude decorrelation measurement is sensitive to transverse flow and immune to phase noise in comparison to Doppler and other phase-based approaches. However, the high axial resolution of OCT makes it very sensitive to the pulsatile bulk motion noise in the axial direction. To overcome this limitation, we developed split-spectrum amplitude-decorrelation angiography (SSADA) to improve the signal-to-noise ratio (SNR) of flow detection. The full OCT spectrum was split into several narrower bands. Inter-B-scan decorrelation was computed using the spectral bands separately and then averaged. The SSADA algorithm was tested on in vivo images of the human macula and optic nerve head. It significantly improved both SNR for flow detection and connectivity of microvascular network when compared to other amplitude-decorrelation algorithms.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography.

        The retinal vasculature is involved in many ocular diseases that cause visual loss. Although fluorescein angiography is the criterion standard for evaluating the retina vasculature, it has risks of adverse effects and known defects in imaging all the layers of the retinal vasculature. Optical coherence tomography (OCT) angiography can image vessels based on flow characteristics and may provide improved information.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration.

          To detect and quantify choroidal neovascularization (CNV) in patients with age-related macular degeneration (AMD) using optical coherence tomography (OCT) angiography. Observational, cross-sectional study. A total of 5 normal subjects and 5 subjects with neovascular AMD were included. A total of 5 eyes with neovascular AMD and 5 normal age-matched controls were scanned by a high-speed (100 000 A-scans/seconds) 1050-nm wavelength swept-source OCT. The macular angiography scan covered a 3 × 3-mm area and comprised 200 × 200 × 8 A-scans acquired in 3.5 seconds. Flow was detected using the split-spectrum amplitude-decorrelation angiography (SSADA) algorithm. Motion artifacts were removed by 3-dimensional (3D) orthogonal registration and merging of 4 scans. The 3D angiography was segmented into 3 layers: inner retina (to show retinal vasculature), outer retina (to identify CNV), and choroid. En face maximum projection was used to obtain 2-dimensional angiograms from the 3 layers. The CNV area and flow index were computed from the en face OCT angiogram of the outer retinal layer. Flow (decorrelation) and structural data were combined in composite color angiograms for both en face and cross-sectional views. The CNV angiogram, CNV area, and CNV flow index. En face OCT angiograms of CNV showed sizes and locations that were confirmed by fluorescein angiography (FA). Optical coherence tomography angiography provided more distinct vascular network patterns that were less obscured by subretinal hemorrhage. The en face angiograms also showed areas of reduced choroidal flow adjacent to the CNV in all cases and significantly reduced retinal flow in 1 case. Cross-sectional angiograms were used to visualize CNV location relative to the retinal pigment epithelium and Bruch's layer and classify type I and type II CNV. A feeder vessel could be identified in 1 case. Higher flow indexes were associated with larger CNV and type II CNV. Optical coherence tomography angiography provides depth-resolved information and detailed images of CNV in neovascular AMD. Quantitative information regarding CNV flow and area can be obtained. Further studies are needed to assess the role of quantitative OCT angiography in the evaluation and treatment of neovascular AMD. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
            Bookmark

            Author and article information

            Affiliations
            [1 ]Casey Eye Institute, Oregon Health & Science University , 3375 SW Terwilliger Blvd, Portland, OR 97239 USA
            Author notes
            [*]

            These authors contributed equally to this work.

            Journal
            Sci Rep
            Sci Rep
            Scientific Reports
            Nature Publishing Group
            2045-2322
            10 February 2017
            2017
            : 7
            28186181
            5301488
            srep42201
            10.1038/srep42201
            Copyright © 2017, The Author(s)

            This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

            Categories
            Article

            Uncategorized

            Comments

            Comment on this article