53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cell cycle-dependent regulation of the nuclease activity of Mus81–Eme1/Mms4

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The conserved heterodimeric endonuclease Mus81–Eme1/Mms4 plays an important role in the maintenance of genomic integrity in eukaryotic cells. Here, we show that budding yeast Mus81–Mms4 is strictly regulated during the mitotic cell cycle by Cdc28 (CDK)- and Cdc5 (Polo-like kinase)-dependent phosphorylation of the non-catalytic subunit Mms4. The phosphorylation of this protein occurs only after bulk DNA synthesis and before chromosome segregation, and is absolutely necessary for the function of the Mus81–Mms4 complex. Consistently, a phosphorylation-defective mms4 mutant shows highly reduced nuclease activity and increases the sensitivity of cells lacking the RecQ-helicase Sgs1 to various agents that cause DNA damage or replicative stress. The mode of regulation of Mus81–Mms4 restricts its activity to a short period of the cell cycle, thus preventing its function during chromosome replication and the negative consequences for genome stability derived from its nucleolytic action. Yet, the controlled Mus81–Mms4 activity provides a safeguard mechanism to resolve DNA intermediates that may remain after replication and require processing before mitosis.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of DNA repair throughout the cell cycle.

          The repair of DNA lesions that occur endogenously or in response to diverse genotoxic stresses is indispensable for genome integrity. DNA lesions activate checkpoint pathways that regulate specific DNA-repair mechanisms in the different phases of the cell cycle. Checkpoint-arrested cells resume cell-cycle progression once damage has been repaired, whereas cells with unrepairable DNA lesions undergo permanent cell-cycle arrest or apoptosis. Recent studies have provided insights into the mechanisms that contribute to DNA repair in specific cell-cycle phases and have highlighted the mechanisms that ensure cell-cycle progression or arrest in normal and cancerous cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Maintaining genome stability at the replication fork.

            Aberrant DNA replication is a major source of the mutations and chromosome rearrangements that are associated with pathological disorders. When replication is compromised, DNA becomes more prone to breakage. Secondary structures, highly transcribed DNA sequences and damaged DNA stall replication forks, which then require checkpoint factors and specialized enzymatic activities for their stabilization and subsequent advance. These mechanisms ensure that the local DNA damage response, which enables replication fork progression and DNA repair in S phase, is coupled with cell cycle transitions. The mechanisms that operate in eukaryotic cells to promote replication fork integrity and coordinate replication with other aspects of chromosome maintenance are becoming clear.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targets of the cyclin-dependent kinase Cdk1.

              The events of cell reproduction are governed by oscillations in the activities of cyclin-dependent kinases (Cdks). Cdks control the cell cycle by catalysing the transfer of phosphate from ATP to specific protein substrates. Despite their importance in cell-cycle control, few Cdk substrates have been identified. Here, we screened a budding yeast proteomic library for proteins that are directly phosphorylated by Cdk1 in whole-cell extracts. We identified about 200 Cdk1 substrates, several of which are phosphorylated in vivo in a Cdk1-dependent manner. The identities of these substrates reveal that Cdk1 employs a global regulatory strategy involving phosphorylation of other regulatory molecules as well as phosphorylation of the molecular machines that drive cell-cycle events. Detailed analysis of these substrates is likely to yield important insights into cell-cycle regulation.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                September 2012
                September 2012
                22 June 2012
                22 June 2012
                : 40
                : 17
                : 8325-8335
                Affiliations
                Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, 28049 Madrid, Spain
                Author notes
                *To whom correspondence should be addressed. Tel: +34 91 1964516; Fax: +34 91 1964420; Email: jatercero@ 123456cbm.uam.es
                Article
                gks599
                10.1093/nar/gks599
                3458551
                22730299
                edc4ee09-8d5c-4a10-80e0-97c696544963
                © The Author(s) 2012. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 February 2012
                : 15 May 2012
                : 28 May 2012
                Page count
                Pages: 11
                Categories
                Genome Integrity, Repair and Replication

                Genetics
                Genetics

                Comments

                Comment on this article